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Abstract Learning controllers based on dynamic programming
require some means of storing arbitrary functions and finding
global minima within cross sections of those functions. There
are many general methods for learning and representing
functions, including polynomials, multi-layer perceptrons with
backpropagation, and radial basis functions, but these systems
do not allow the minima to be found easily. A method is
presented here for learning and finding the minima of all cross
sections of an arbitrary, smooth function. This method is
applicable to any general function approximation system that
learns smooth functions from examples. Mathematical
properties of this approach are described, applications to
learning control are discussed, and simulation results are
presented.

INTRODUCTION

Optimal control ofa nonlinear poorly modeledsystemis a
difficult problem. In recentyears,a numberof systemshave
beendesignedfor this problemthat are basedon dynamic
programming[1]-[5],[8],[9],[12]. Such systemsgenerally
have two significant properties:they must learn functions
from experience, and they must be ablénd the minimaof
thesefunctions. Many well-studiedmethodsare widely used
for learning arbitrary functions. Theseinclude high-order
polynomials, multi-layer perceptronswith backpropagation
learning[6],[7], andradial basisfunctions. Unfortunately,it
is often impossibleto find the minimum of a function
analytically when it is representedising thesetechniques.
The problemto be solved can be summarizedas follows.
Given a vector x, find the vector u that minimizes f(x,u),
wheref is an arbitrary, smooth functiorihis paperproposes
one methodfor solving the problemby learninga function
F(x,u,p) whosedomainhasone additionaldimension. The
function F(x,u,0) is trainedto be equalto f(x,u), and the
function F(x,u,p) for p>0 is trained in accordancewith a
simple differential equation.
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MINIMIZATION

The approachpresentecherewill be appliedto a discrete
problemfirst, thento the continuousproblem. Considerthe
problem of finding the minimum of the following list of
digits:

45246943

Oneway to solvethe problemis to take eachpair of digits
in the list and write the minimum of that pair on the line
above. Repeatingthis gives the triangular array of digits
shown in fig.1.

Fig 1. Triangular array of digits.

Givenan array generatedn this manner,the minimum of
the list will alwaysbe found at thetop. The location of the
minimum can be found by startingat the top and repeatedly
moving to the minimum of the two adjacentnumberson the
line below, as shown by the shadedpath in fig. 1. This
gradientdescentpath always endsat the minimum digit in
the original list.

Thefollowing two conditionsuniquely specifyeachof the
values in the triangular array.



® The bottom row of tharray must consisif thelist to be
minimized. In other words, i is the kth numberon the
bottomrow of the array,andN is the kth numberin the
list to be minimized, then:

A=N 1)
® For any adjacent numbers A, B, and C in this
arrangement:
A
BC

the following condition holds:

min(B—A,C—A)= 0 (2)

Given a triangulararrayinitialized to arbitraryvalues,the
two conditionscan be usedto find the minimum of a list.
This is done byelectinga valueA from the arrayat random.
This value is then modified to satisfy the aboveconditions.
If this is done repeatedly,then the bottom row gradually
becomeghe sameasthelist to be minimized,andthe upper
rows graduallycometo reflect the minimum of the bottom
row. With probability 1, the array will convergeto the
desired values.

This approach can be generalized to findrttieimum of a
continuousfunction. Insteadof the minimum digit of a list,
the problemis to find the minimum value of a function f(u)
over the interval [-1,1]. Jusisthe minimumdigit wasfound
usinga triangulararrayof digits, sothe minimum of f canbe
found usinga functiondefinedovera triangularregion. This
function can be storedin a connectionistnetwork with two
inputs,u andp, andoneoutput,F(u,p). Thenetworkcanbe
any general function approximation system, such as a
backpropagation, multi-layer perceptron network.
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Fig. 2. Triangular domain of functida(u,p).
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Theinputs,u and p, arethe axesin fig. 2. Given a point
onthetriangleor within it, the networkwill outputthe value
F(u,p) associatedwith that point. Equation (3) is the
continuous version of (1).

Ou 0O[-11] F(u,0) = f(u) ®)

In (2), thevalueat point A is determinedby the minimum
of two differences. Thesedifferencesare taken between
adjacentumbersn diagonaldirections. For the continuous
problem, those differences are replaced by directional
derivatives along the diagonal directions. Define
D(u,,p,)F(u,p) to be the directional derivative of F in the
direction (u1,p1) evaluatedat (u,p). The continuousversion
of (2) is (4).

Op 0(0,2} uO[-@- p).1-p]

min(D,, , F(u,p).D, ,F(u,p))=0 @

Equations(3) and (4) describethe propertiesthat the
function F musthave. It canbe proventhat if the function
f(u) and its first derivative are continuous,then there does
exist a function F that satisfies(3) and (4). Furthermorejt
canbe shownthat this solutionis unique,is continuousand
can be written in closed form as:

Op 0(0,1} uO[—(1- p),.1-p]

PP = (1) )

Thevalueof F at a given point is the minimum of f over
someregion. Thatregionis smallfor small p andlargerfor
largerp. For p=1 the minimum is over the entire domain,
[-1,1].

Once F hasbeenfound, the minimum of f(u) is simply
F(0,1). A valueof u thatminimizesf(u) canbe found by the
gradientdescenprocesghat startsat F(0,1) and movesat a
steadyrate in the negativep direction, while following the
gradientin theu direction. Whenp reachesero,u will bea
value that minimize§u).

To find the function F over the triangular domain, an
approximationof F will needto be stored and gradually
improved. Assume that F is stored in a function
approximation system that is continuous and has a
continuous gradient at every poirft. will beimprovedusing
(3) and (4), which requiresfinding the minimum of two
directionalderivatives. Let m be the minimum of the two
directional derivatives, which can be calculated quickly
using (6).

m= min(DH,,l) F(u, p), D, , F(u, P))
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If uis atwo dimensionalvectorand p remainsa scalar,
then F becomesa function over the points in a pyramid
insteadof in atriangle. If u andd aren dimensionalectors
andp is scalar, then (3) and (4) become (7) and (8).

Oi 0{1,2,...,n}, u O[-1,1] F(u,0)= f(u)

()
O 0{1,2....,n}, pO(©.1],u O[«1-p).1-p]
min (D, ,,F(u,p))=0
dD{_IJ,l}n( a-nF (U p)) ©

If the function f(u) is continuousand has a continuous
gradient,thenthe function F that satisfies(7) and(8) exists,
is unique,is continuous,and can be written in closedform
as:

Oi 0{3,2,...,n}, pOO1],u, O[-1-p),1-p]

F(u,p)= ﬁ(f W)
H
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The differential equationscan be solved by an iterative
method,using a networkto storethe currentapproximation
of F. Thenetworkusedto solvetheseequationshouldhave
n+1 inputs p andthe elementof u), andoneoutput,F. The
storedfunction should be repeatedlyadjustedat randomly-
chosen points so that (7) and (8) are satisfied.

The above discussion assuntiesreis only onefunctionto
minimize, f(u). Therecould alsobe a parameterizedamily
of functions,eachof which is to be minimized. In thatcase,
all of the above remains true for each of these functidine
entire family of functionscanbe storedin a single network
and trained simultaneously, possibly leading to useful
generalization between functions.

In summary,to find a u that minimizes f(x,u) for each
possible value of, the following algorithm should be used.

ALGORITHM TO MINIMIZE f(X,U)

* Initialize the net to a convenient function (&=g0)
» Repeat the following steps
» Randomly choose a value for
» Randomly choosp to be either zero or a value from
(0.1],
* Randomly choose each elementfrom [«(1-p),1-p]
*If p=0then
* Train the net to increasgx,u,p) by an amount
proportional taf(x,u)—F(x,u,p)
* else
* Train the net to increas€u,p) by an amount
proportional to

Expression(10) is the multidimensionalersionof (6), and
representghe negativeof the minimum of the directional
derivatives. The network is adjustedto make this value
closer to zero, thus satisfying (8).

As this procedureis repeated,the function F(x,u,0)
changes tbecomeequalto f(x,u). ThefunctionF(x,u,p) for
p>0 changes to reflect the minimumfff,u). After training,
the valueF(x,0,1) is equal to the minimum &(,u).

Note thatif the plus sign beforethe summationin (10) is
changedto a minus sign, then the algorithm finds the
maximum value instead of the minimum value.

SIMULATION RESULTS

Fig. 3 showssimulationresults. A three-layer sigmoidal,
backpropagatiometwork was used to learn the function
F(u,p). Thetop graphshowsthe functionto be minimized,
f(u). The bottom graph shows the function F(u,p) after
learning. As desired,the network convergedto the correct
function, with the minimum value of f(u) at the apexof the
triangle, and a valley leading from the apex to the
minimizing value ofu.
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Fig. 3. The functiori(u) to minimize (top), and the function
F(u,p) that the network learned (bottom).



Onefeatureof this algorithm s that, when minimizing a
function with two local minima, it will learnvalleys of low
valuesstartingfrom thosetwo pointsand headingtowardthe
apexof thetriangle,with thelower valley endingat the apex
and thehighervalley endingbeforeit reacheshe apex. This
is usefulif thefunctionf(u) changesasis oftenthe casein a
dynamic programmingsystem. If f(u) changesslightly so
that the other local minimum becomeslower, then all the
networkmustdo is extendone valley and shortenthe other
one. For mosttypesof networks,shifting ridgesandvalleys
is a faster operation than learning to create wnaleys. This
suggestshatthis algorithmshouldbe capableof trackingthe
minimum of a slowly changingfunction. It hasthe further
advantage of not needing to be resettartedoverwhenever
the function beingminimized changes. Theseare important
propertiesif this systemis used as part of a dynamic
programming system.

GRADIENT DESCENT

Once the network has learnedF, it is easyto find the
minimum of f(x,u) for a given u. It is simply the value
F(x,0,1). Theu that yields thatinimumvaluecanbefound
by a gradientdescentmethod. Algorithm GRAD returnsthat
value ofu.

Algorithm GRAD(,u,p)
* |nitialize eachyj to O

» Forp decreasing from 1 to O by some small step size
loop:

Q-LEARNING

The most natural use of this minimization techniquefor
learning control is as a componentof a Q-learningsystem.
Q-learning is a form of dynamic programmidgvelopedand
provenoptimal by Watkins[11]. It requires a numberto be
storedfor eachstate-actiorpair (x,u), wherex is the stateof
the systembeingcontrolledat a given pointin time, andu is
the controlactionchoserby the controllerin responseo that
state. Both x andu are vectors,possibly high-dimensional
vectors. If the systemis in state x(t) and the controller
respondswith action u(t), then the resulting state will be
x(t+1), and the systemincurs a cost given by the function
C(x(t),u(t)). After performinga given action,the associated

valueQ(x(t),u(t)) should be updated to be closer to the value:

C(x (1), u(t) +y in(Q(x(t +1),u)) 13)

wherey is the discount factor and lies in the range [0,1].

After the Q-valueshave convergedthe controller should
alwaysrespondto a statex by choosingthe action u that
minimizes Q(x,u). If x and u can only take on a finite
numberof values,andif the Q-valuesare storedin a table,
then Watkins has proventhat, if eachaction is performed
sufficiently often in each state during learning, then this
methodwill resultin a controller that minimizes the total,
discounted cost:

S C(x(t), u(t
;v (x(t),u(t)) 14)

» Calculate each element of the minimum directional

derivative vector:

F C
di =—S|3g F(;('u'p)E
. (1)
eU«—uU+d
* End loop
* Returnu

This algorithm is useful after learningis finished, but it
might also be useful during learning. Learning might be
improvedif expression(10) in the learningalgorithm were
replaced with (12).

F(x, GRAD(x, u, p),0)— F(x,u, p) (12)
This would allow information to flow towards the apafixthe
triangle more quickly, and might allow learning in fewer
training steps. It would, however, increase ¢beputational
costpertime stepduring training, sinceit involvesan entire
gradient descent on each step.

When the valuesare continuous,the Q function must be
approximatedvith somefunctionapproximationsystem and
the problemof finding the minimum becomesnoredifficult.
The minimization technique presentedhere incrementally
works on finding the minimum for many states
simultaneously. It may also allow useful generalization.
Fig. 4 gives an example of a cagkereusefulgeneralization
would be expected to occur.
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Fig. 4. Q-values for statg (left) and » (right).
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In fig. 4, statesxq and xo are assumedo be near each
otherin statespace. The bestactionin statexy is u; andin
statexs is up. Using the proposedmethod,the F function



containsvalleysleadingto both local minimain both states,
with onevalley slightly lower thanthe otherin eachcase. If
statesx1 andxz areneareachother,andif it is only trained
with datafrom x1 andxs , thenit maytendto generalizein
the stateshetweernx; andxs. As the statemovesfrom x1 to
X2, the valley at uy gradually rises, and the valley at u2
gradually drops. The action recommendedy the system
will thereforebe u1 up to the point where the valleys are
equal, and will be up thereafter. This is a reasonable
generalization,and will lead to recommendationghat are
monotonically improving.

Less useful generalizationwould be expectedfrom a
learning controlleusinga policy network. A policy network
simply storesthe optimal action u for eachx. If sucha
network were trained only for x1 and xp, it would
recommendiy atx1 andup at xo. In the intermediatestates
betweenx1 and x> it would recommendactionsbetweenuq
andup. In this example thesearethe worstpossibleactions.
This suggestthatif it is likely thatthe Q functionswill have
local minima (at least during learning), thepolicy network
may be a less useful approachto learning control. The

visible to both playersand is representedy x. For some
gamesthe optimal strategyis a function of the state. For

other games, the optimal strategy is to pick actions
stochastically,where the probabilities are functions of the

state. Some games do not even have optimal strategies.

One particularly interesting game always has a

deterministic optimal strategy. One player acts as a

controller,trying to minimize cost,andthe otherplayeracts
as a disturbance, trying to maximize cost. On e step,
the controllerlooks at the stateand choosesan action. The
disturbancethen looks at that state and the controller’s
action,andchoosests own action.Finally, thesetwo actions
are performed,and the statechanges. This gameis simply

anotherway of viewing robust control [1]. The goal of

robust control is to build a controller that is optimal, not

under the averagedisturbanceconditions,but under worst-
case disturbanceconditions. “Worst casé is defined as
whatever disturbancesare worst for the controller built.

Thus,if a systemis capableof learningto play differential
gameswith deterministicstrategiesthenit is also able to

learn robust, optimal control.

method using the functioh as proposed here may be better. A learningsystemsuchas Q-learning can be modified to

FINDING SADDLEPOINTS

Dynamic programming networks have been used
successfullyto learn good strategiesfor board games[10],
and may be useful for playing differential games.
Differential gamesare gameswherethe control actionsare
donecontinuously suchasin two playervideogames. Each
player controlscertainelementsof u, andthe entire stateis

handle games. The primary differenceis that instead of
finding minima it mustfind saddlepoints.If player number
onecontrolsactionu; andplayernumbertwo controlsaction
up, thenthe optimal action for eachplayerin statex is the
action pair Q1,up), such that:

Q(X,uy, Uz) = mjn maxQ(X, v, w) (15)



In this caseQ representghe value of the gameif action
(ug,up) is performedfollowed by optimal playing thereafter.
A low Q-value isin playerone’sfavor, anda high valueis in
playertwo’s favor. Equation(15) representshe valueof the
game if player two has the advantage of knowif(g) bnefore
choosinguy(t), asin the caseof robustcontrol. If the min
and max were reversed,then player one would have that
advantage. In many games,the value remainsunchanged
when themin andmax are reversedn thesegamesthe point
(ug,up) is called the saddlepointt is assumedherethatsuch
a saddlepoint exists. Saddlepointsare generally more
difficult to find thanminima, yet the methodpresentedere
can be extended to find saddlepoints.

Fig.4 shows the domain of the F function used to
minimize f(u,up). The domainis a pyramid, and after
learningthe minimum will appearat the top. If the sign of
the summationin (10) were changed,then the maximum
would appear at thop. Fig.5 showsthe domainfor finding
the maximumfor eachpossibleu;. For eachu;, thereis a
triangularregionusedto find the maximumof f(ug,up). This
is analogouso thetrianglein fig. 2. During training,thetop
edgeof this prism comesto representhe maximaof eachof
thesecrosssections. Fig. 6 showsthe singletriangleusedto
find the minima of thesemaxima. The baseof the triangle
consistsof all of the maxima,and the apexof the triangle
comesto representhe minimum of the maxima. Both the
lower prism and the upper triangle could be trained
simultaneouslyand the saddlepointvalue would eventually
appeantthetop. Thusthevalueatthetop will bethevalue
of the game. The (u1,up) value canbe found by startingat
the top anddoing gradientdescenin the p andu; directions
for half the distancethendoing gradientascent in the p and
up directionsfor the restof the distance. The fact that the
new minimization method solves multiple minimization
problemsin parallel makesit particularly useful for finding
saddlepoints.Otherminimizationmethodshasedon gradient
descent, simulateannealinggtc.,would be moredifficult to
adapt to the saddlepoint problem.

CONCLUSIONS

An algorithmhasbeenpresentedor finding the minimum
of eachof a family of parameterizedunctions. Simulation
of the algorithmdemonstrategs ability to work on a simple
problem. The propertiesof the algorithm appearto makeit
useful for learning control using dynamic programming
techniques.especiallyQ-learning. It is also extendableto
finding saddlepointssinceit canwork on aninfinite number
of minimization problemsin parallel. Theseappearto be
fruitful areas for further research.
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Fig. 4. Domain of(u1,u2,p) when finding the
minimum off(us,up) over alluy,up.
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Fig. 5. Domain of(uq,u,p) when finding the maximum
f(ug,up) for each possibla;. Each triangle is
analogous to the triangle in fig. 2.

J—

N

Fig. 6. Domain of(u1,u2,p) when finding the minimum
overujof the maximum of(ug,up). The upper
triangle finds the minimum of the maxima.
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