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ABSTRACT

Many reinforcemeniearningsystemssuchas Q-learning(Watkins, 1989), or advantageupdating(Baird,
1993),requirethat a function f(x,u) be learned,andthat the value of arg max f(x,u) be calculatedquickly for
any givernx. The functiorf could be learned by a function approximation system suatmastilayer perceptron,
but the maximumof f for a givenx cannotbe found analyticallyandis difficult to approximatenumericallyfor
high-dimensional vectors. A new methodis proposedwire fitting, in which a function approximationsystem
is usedto learna setof functionscalled control wires, andthe function f is found by fitting a surfaceto the
control wires. Wire fitting has the following four properties: (1) eogtinuoud functioncanberepresentetio
any desired accuracy given sufficient parameters; (2) the function f(x,u) can be evaluated quickly;
(3) arg max f(x,u) canbefoundexactlyin constantime afterevaluatingf(x,u); (4) wire fitting canincorporate
any generalfunctionapproximatiorsystem. Thesefour propertiesarediscusse@ndit is shownhow wire fitting

can be combined with a memory-based learning syster@-dealrning to control an inverted-pendulum system.
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1. INTRODUCTION

A numberof reinforcementearningsystemshave beenproposedrecently,suchas the associativecontrol
proces§ACP) network (Klopf, Morgan,andWeaver,1993a,1993b,Baird andKlopf, 1993a,1993b),ADHDP
(Werbos, 1989), Dyna (Sutton, 1990), other systems described in Barto and Bradtke (1991) Qealsadnomy
(Watkins, 1989, Watkins and Dayan,1992), and systemsbasedon advantageupdating (Baird 1993). These
systemdearnto be optimal controllersof nonlinearplants,typically requiringthata functionf(x, u) be learned.
Theyalsorequirethatthe value of arg max f(x,u) be calculatedrepeatedlyfor variousvaluesof x, both during
learning,andwhenusingthe systemasa controller. If the statex andactionu arediscretizedthenthe function
can be representeds a finite lookup table. If the statex is a real-valuedvector, then the function can be
representedusing standardfunction-representatiortechniquessuch as multilayer perceptrons,radial basis
function networks,and memory-basedearning and interpolation systems(Atkeson, 1990). However,if the
action u is also a real-valuedvector, then finding the maximum is extremely difficult with most function
approximationsystems. Although Tesauro'sTD-Gammonprogram (Tesauro,1990, 1992) demonstrateshat
somedifficult problemscan be solvedusing discretevaluesfor u, most practical problemsrequirereal-valued
vectors. The optimization algorithm describedin Baird (1992) can approximatethe maximum for optimal
control problems(or the saddlepoint for differentialgames)but theremay be errorsin the maximizationduring
learning. Systemausingthe stochastiaeal-valuedunit (Gullapalli, 1990,1991)or the Analog LearningElement
(Millington, 1991) can learn real-valued actions without maximizing learned functions, but they requsedhe
a particular exploration scheme. It is desirable for a systemablé® learnunderany explorationschemehat
tries all actionsin all statessufficiently often. Q-learning and advantageupdating, for example, have this
property. Also, it would be useful if thEwerof any generalfunction approximatiorsystemcould be harnessed
to learn the function, while still allowing the maximumof the function to be found quickly and exactly. A

method is proposeairefitting, that has these desirable properties.



2. MAXIMIZATION OF A FUNCTION

First considerthe simpler problemof learninga function f(u) suchthat it is possibleto quickly find the

maximum of the function. Figure 1 shows one approach to solving this problem.

(u2 ,yz)

LYy @

u

Figure 1. Method for storing a functidfu) such that the maximum can be found quickly.

The shapeof the function is determinedby three control points (circles). Six
parametersiq,up,us,y1,y2,y3 areinitialized to arbitraryvalues. As training samples
areobservedthe six parametersreadjustedsothatf(u) (dottedline) is a goodfit
to the trainingdata. The valueof f(u) at point u is definedasa weightedaverage
of the threey; values,weightedby distancebetweenu and u;, and also by the
distancebetweeny; and ymax. This ensuresthat the maximum of f(u) always
occurs at one of the control points,Y;).

The shapeof the function f(u) is controlledby six parametersvhich specify the location of three control

points. The functiof(u) is defined as:

f(u) = - = 1)

Thefunctionis definedby a weighted-nearest-neighbmterpolationof the threecontrol points. If equation
(1) is undefined for a given value wfthenf(u) is defined to benaxy for that value of u.The functionmaynot
go throughevery control point, but it is guaranteedo go throughthe highestpoint. Also, the function is
guaranteedheverto go abovethe highestpoint or below the lowest point. Therefore,the maximum of the

function is guaranteed to be located atuhevhich has the same subscript as the maximuralue.



This function approximationsystemresemblesa memory basedlearning system,but is different. In a
memorybasedearningsystem,a setof training datais storedandinterpolatedto give the functionf(u). In the
systemdescribedhere,the control points areinitialized to arbitraryvalues. Then, astraining datais observed,
the control pointsshift until f(u) approximateshe training data. For example,if all of the training datalies on
the curve shownin Figure 1, then a gradient-descenlearning algorithm will learnto placethe three control
points as shownin Figure 1. The control point (u3,y3), therefore,learnsto be much lower than any of the
training data. Equation(1) might not be a good algorithm for interpolatingraw training data, but it may be
usefulfor learningif the control pointsshift during learning. The maximumof the curvef canbe foundin even
lesstime than it takesto evaluatef(u) for an arbitrary u, becausehe maximum can be found without using
equation (1).

Theremay be usesfor a systemthat canlearnf(u) andfind the maximum. It is more useful, however,to
havea systemthat canlearnf(x,u) andcanfind the u that maximizesthe functionfor any givenx. This canbe
doneusingthe samemethodshownabove,but with the parametersij andy; replacedwith functionsu;j(x) and
Yi(X). In this casethe control pointsbecomecontrol wiresin a higher-dimensionaspace andthe functionis a

surface fitted to those wires.



3. MAXIMIZATION OF A CROSS SECTION

Wire fitting is a function approximationrmethoddesignedo facilitate finding the maximumof the function

f(x, u) for anygivenx. Whenusingwire fitting, the functionf(x, u) is evaluatedor a givenx andu asshownin

Tf(x,u)

Interpolation Function (equation 2)
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Figure 2.

Figure 2. The wire fitting architecture.

A function approximation systefaarnsthe functionin the lower block. Giventhe
statex, thisgenerates setof controlpoints. Theinterpolatingfunctionthenfits a
functionto the setof control pointsandcalculated(x,u), in the samemannerasin
Figure 1.

Any generalfunction approximationsystemcanbe usedto learnthe function marked"learnedfunction” in
Figure2. This functiongenerates setof control pointsbaseduponthevalueof x. A functionis thenfitted to
the setof control points,andthe value of f is then calculatedfrom u in the mannerillustratedin the previous
section. Sincethereis a setof control pointsfor everypossiblex, the control pointsareactuallycontrol curves,
or wires, in ahigher-dimensionadpace. Thus,thefunctionis actuallybeingfitted to a setof wiresratherthanto

a set of points.Theactionu andthefunctionsd;j areall vectorswith the samenumberof elements.The statex

is alsoa vector,possiblywith a differentnumberof elements.Thefunctionf andthe functionsy, areall scalars,

andf is a weightedaverageof the setof y,. In a reinforcementiearningsystem,the function f(x, u) typically

representshe utility of performingactionu in statex, sothe u that maximizesf(x,u) is the optimal actionto

performin statex. The lower box in Figure2 canbe any function approximationsystem,suchasa multilayer

perceptrortrainedby backpropagationlts only inputis the statex. Its outputis a setof vectorpairs (U, vy, ),

which control the shape of the functimnstatex. Equation(2) is a continuoussmoothfunction of its inputs,so

it is possible to backpropagate error$ back through equation (2) to update weights in the learning system:
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For a given state, the setwdctorpairs(Qj, y ) areinterpolatedo give f(x,u). Thevaluey _ is simplythe
maximumof the y values. Equation(2) definesf(x,u) for a particularu to be a weightedaverageof y values.
If u is neara particular Gj, then the correspondingy, is given more weight. The nonnegativeconstant
parameters; determinethe amountof smoothing. If all ¢j =0, thenthe interpolation"honorsthe data",andf=y,
whenu= (. If thecj values are positive, the interpolated function is smootherf, @@y not be exactly equal to
y., evenwhenu= (.. Theconstant; canbechosenra priori, or theycanbelearned. As will be shownbelow,
if the learnedfunctionis trainedwith a memory-basedearningmethod,thenthe valuesfor ¢; canbe chosen
arbitrarily, with no effect on learningor performance. The limit in equation(2) is merely for mathematical

completenesslt ensureghatthe functionis definedwhenu= j. The equationcanbe written without the limit

andg, if it is stated that(x,u)=y whenever the coefficient of in the summation would be undefined.

The control points (Gj, y, ) serveto shapethe functionin a given state. Eachcontrol point plays a role

analogousto a knot for a spline or a data point for an interpolationfunction. It is also analogousto the
parametersassociatedvith one radial basisfunction in a radial basisfunction network. In eachcase,the
parameterdhave a local effect on the shapeof the function. However, Equation2 has one property that
distinguishes it from other interpolation algorithntéo matterwhatvaluesthe vectorpairshave,it is alwaysthe

case that:

max f (x,u) = maxy,(x) =y, (x) 3

This is easily proved. First, considera value of u not equalto any Gj . In this case,the expressionn

Equationl is definedfor €=0. f is thena weightedaverageof the y , with eachweight betweenzeroandone
andthe sumof the weightsequalto one. A weightedaverageof severalnumberscannotexceedthe largest
numbersof is lessthanor equalto themaximumy , whichis y _ . Next, considerthe casein which u is equal
to Umax, Wherelmay, is the G with the samesubscriptasy,__, . In this case,ase goesto zero,the sumin the

numeratorcomesto be dominatedoy the term containinglmax and y

max !

soin thelimit f=y__ . Lastly, consider

the casein which u= uj _Umax. By a similar argument,f ¢j=0, thenf=y _y . If ¢_0, thenf is simply a



weightedsumof y, sof_y_ . Thus,whenu= Omax, f=Yy

max !

and for every u_UOmax, f_y... . Therefore,
Equation 3 is true.

Giventhis methodfor representing functionf, it is possibleto implementa reinforcementearningsystem
thatlearnsfrom any sequencef actions. Any function approximationsystemcanbe usedasthe lower box in
Figure 2. The system in Figure 2 can be used to quickly calculdtedhes for agiven state-actiorpair, f(x, u),
or the optimalactionin a state,limax(X), or the maximumf valuefor a state,y__ (x). If actionu is performedin
statex, thenf(x, u) can be calculatedimmediately. On the next time step (or severaltime stepslater for
multisteplearning),an improvedestimatecan be calculatedfor f(x, u) by the reinforcementearningalgorithm,
usingthe value of the new statesandthe reinforcementeceived. This canbe usedto calculatean errorin f(x,
u). If the learningsystemis gradient-basedhen the error can be propagatedack through Equation2 and
throughthe learnedfunction,sothatf(x, u) movestowardthe improvedestimatefor f(x, u). Thus,this method
for representing is flexible, and can be incorporated in a variety of reinforcement learning systems.

This method for representing the functigx u) can be represented graphically, as shown in Figure 3.
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Figure 3. An example of a functidx,u) whose shape is determined by three wires.

In any given state,suchas xp, the wires intersectthe planeof that stateat three
points. Thesethreepointsarethe control pointsthat determinethe shapeof the

functionfor thatvalueof x. The shapeof the functionin that planeis determined
by the locationof the threewires, andthe function is guaranteedo passthrough
the point Omax(X0), V... (X0)), which in this example is the poiriix(xg), y, (X0))-

The upper graphs in Figure 2 show an example of a furikar), wherex andu are scalars. The graph
theleft is thef functionitself, while the one on the right showsthreecontrol wires superimposeon the picture.
Thelower graphis a crosssectionof the function, takenat statexg. The setof all pointsof the form (x, G;j(x),

y, (X)) formstheith wire in 3-D space. The shapeof the surfaces thendeterminedoy the shapeandlocationof

the controlwires. The shapeof the functionin this exampleis determinedby threewires: A high, curvedwire



(darkgray),a medium,curvedwire (light gray),anda low, straightwire (black). Althoughthe surfacedoesnot
touchthewiresat everypoint, it is drawntowardthem,andso consistsof two intersectingridgeswith a valley
betweerthem. Wheretheridgesintersectthe surfacerisesto the highestwire. In this exampleeachwire hasa
constantheightbut, in generala wire could havea varying height. Thelower picturein Figure2 showsa cross
sectionof the graphon theright for a particularstate xg. Eachwire intersectghe planeof xg at a point, sothe
threewires define three control points. The learningsystemlearnsthe location of eachcontrol point in each
state. The surface definedby Equation2, which ensureghatthe highestpoint on the surfacewill lie on oneof

the control points within the cross section at any given state.



4. MEMORY -BASED L EARNING

The methodpresentedherefor representing function canbe usedwith a variety of functionrepresentation
systems. It is clearhow it could be usedwith a gradient-basedlunction approximationsystem. The errorin f
can be propagatedack through equation(2) (which is differentiable),to changethe weightsin the learning
system. This causeghe controlwiresto shift until the surfacehasthe appropriateshapeto minimize the mean
squarederrorin f. It may be lessclear how it could be usedwith a memory-basedunction approximation
system, so we elaborate upon that alternative in this section.

For a memory-basedunction approximationsystem, the storedinformationwill comprisea set of triplets
(X, ut, Et). If actionu is performedin statex; at time t, the systemwill outputf(xt,ut). The reinforcement
learning algorithm then calculatesan estimateE; of what f(x,ut) should have been,basedon the results of
performing actiorut in statex;. Once this estimate hasencalculatedthetriplet (xt, ut, Et) canbe stored. The
functionsij(x) andy;j(x) canbe calculatedrom the setof storedmemories. If old memoriesare eventuallylost,
perhapsbecausef a finite-sizedmemoryset, thenthe Gj(x) andy;(x) functionswould be expectedo improve
with experience, yielding memory-based learning.

Memory-basedearninghasan advantageelativeto gradientlearningsystemsvhenusedwith wire fitting.
It is possibleto calculateand store eachtriplet without calculatingf(x, u). In a gradientlearningsystem,the
output of the systemmust be calculatedso that an error can be found to drive learning. In a memory-based
system,examplesof inputs and desiredoutputsare simply stored,and the actual outputsf(x, u) neednot be
calculated. Thus, for the particular caseof a memory-basedearning system, Equation 2 need never be
evaluated. This not only savescalculationtime, but also simplifies the systembecausdhe constants; do not
have to be chosen or learned.

An important questionfor a memory-baseaystemis that of how the functions Gj(x) and yj(x) can be
calculatedrom the setof storeddata. In Figure 3, this would correspondo the questionof how severalwires
canbe createdthat will generatea surfacethat is a reasonable@pproximationto a setof datapoints scattered
throughoutthe cube. If therearen functionsdij(x) andy;j(x), theneverystatewill intersectn of the wires. One
possible solution is presented next.

For a given statg, the functionglj(x) andy;j(x) are defined by Equations 4 through 1Dtherearen wires,
then there will be a wire associated with each ohttata points nearest statex (Euclideandistance). Theith

wire will not necessarilyo throughtheith datapoint, but Gj(x) will typically be fairly closeto theu component



of the associatedlatapoint. In the equationghatfollow, t is anindexthat rangesover all storeddatapoints.
Theindexi rangesover thosedatapointsthat are associatedvith wires. Statesand actionsare vectors. The
subscriptk representshe kth elementof an actionvector,andthe subscriptL representshe Lth elementof a

state vector:

(4)
Z yidii Z uikd”
7= ©) 5 g ©)
> y;u,d, —
yu, = - (7) =t (8)
z d'J " Uik - (yulk)
e, (x)=1, +am, 9) y(x)=y +ay m (10)

Eachof the n datapoints (xt, ut, Et) is projectedinto the planeof the currentstatex, to give a projected
point (X, ut, Ey). Thesepointsarelocationswhereestimate®f the valueof f shouldbe mostreliable. All of the
datapoints(notjustthe n closest)havean effecton the wire associateavith eachprojectedpoint. The effectof
the tth datapoint on the ith wire is inversely proportionalto its distancefrom the projection,andis given by
Equationd4. Equations5 through8 performweightedlinear regression. This givesan estimateof the direction
one should move from the projectedpoint to maximizethe function f(x, u). Equations9 and 10 placethe
locationof theith wire (uj(x), yi(x)) nearthe projectedpoint, slightly uphill in the directionfound by weighted
linear regression. Thus, each wire comprises a local estimate of an action thahexaoldef, andanestimate
of thef valuefor thataction. Thelinearregressions doneseparatelyor eachdimension. For high-dimensional
actionvectors,this is lesscomputationallyintensivethan doing multidimensionalinear regression. The results
are the samewhenthe storedvalues(xt, ut) are evenlydistributed(havezero covariance). If the state-action
spaceis exploredunevenly,thenthe storedvaluesmay not be evenly distributed,and it may be necessaryo

perform an affine transformation on the data to give zero covariance.



5. SMULATION RESULTS

The wire fitting approach was tested by incorporatingtd a reinforcementearningsystemusedto control
aninvertedpendulumhingedto a cart moving on an infinite track. Q-learningwas usedfor the reinforcement
learningalgorithm,and a memory-basedearningsystemwas usedas the function approximationsystem. The

equations for the cart-pole system are:

(m, +m )x+mI€cose -ml6°sin6 = f -y sgnx (11)
4m I°6 + m Ixcose - m glsing = -y § (12)
where:
X = position of the cart (m)
o = pole angle (rad)
g = 9.8m/s2 acceleratia due to gravity
me = 1.0kg mass of the cart
mp = 0.1kg mass of the pole
Il = 05m pole half-length
uc = 0.0005N friction between cart and track
up = 0.000002 Nm s friction between pole and cart
[fl _ 10.0N force applied to cart

The cart-polesystemwas simulatedby Eulerintegrationat 50 Hz. Reinforcementvas proportionalto the
pole anglesquaredwith anadditionalnegativereinforcementvhenthe pole exceeded 2 degreedrom vertical.
The learning system was allowed to learn for only 60 secorglsafatedtime, duringwhich arandomactionin
therange[-10,10] newtonswaschosenwith uniform probability on eachtime step. This training datacontained
information on only a small portion of the statespace,so the learningsystemwas forcedto generalize. The
learningsystemwas ableto balancethe pole indefinitely after 60 secondsof training time, after which learning
wasdisabled. Whenthe learningsystenmwasappliedto a finite-track, cart-poleproblem,it wasnot ableto learn
to control the cart and pole consistently. This appeardo be due to the fact that a time stepwas only 0.02
second. Baird (1993) explainswhy Q-learningcannotlearnin continuougime (or discretetime with smalltime
steps),and proposesa new algorithm, advantageupdating, which doesnot have this limitation. Advantage
updatingcould be combinedwith wire fitting and a function approximationsystem;this remainsan areafor

future research.



6. CONCLUSION

We have proposedwire fitting, a new method for representingfunctions using any general function
approximationsystem. This methodsolvesthe maximizationproblemarisingin reinforcementearningsystems
and offers several other advantages. We pasgsentecn exampleof a memory-basegdystemthatmaybe used
with the methodto representQ functions,and haveshownhow the method,combinedwith the memory-based

system, can be used for reinforcement learning on a cart-pole control problem.
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