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ABSTRACT

Many reinforcement learning systems, such as Q-learning (Watkins, 1989), or advantage updating (Baird,

1993), require that a function f(x,u) be learned, and that the value of arg max 
u 

f x , u ( )  be calculated quickly for

any given x.  The function f could be learned by a function approximation system such as a multilayer perceptron,

but the maximum of f for a given x cannot be found analytically and is difficult to approximate numerically for

high-dimensional u vectors.  A new method is proposed, wire fitting, in which a function approximation system

is used to learn a set of functions called control wires, and the function f is found by fitting a surface to the

control wires.  Wire fitting has the following four properties:  (1) any continuous f function can be represented to

any desired accuracy given sufficient parameters;  (2) the function f(x,u) can be evaluated quickly;

(3) arg max 
u 

f x , u ( )  can be found exactly in constant time after evaluating f(x,u);  (4) wire fitting can incorporate

any general function approximation system.  These four properties are discussed and it is shown how wire fitting

can be combined with a memory-based learning system and Q-learning to control an inverted-pendulum system.
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1. INTRODUCTION

A number of reinforcement learning systems have been proposed recently, such as the associative control

process (ACP) network (Klopf, Morgan, and Weaver, 1993a, 1993b, Baird and Klopf, 1993a, 1993b), ADHDP

(Werbos, 1989), Dyna (Sutton, 1990), other systems described in Barto and Bradtke (1991) based on Q-learning

(Watkins, 1989, Watkins and Dayan, 1992), and systems based on advantage updating (Baird 1993).  These

systems learn to be optimal controllers of nonlinear plants, typically requiring that a function f(x, u) be learned.

They also require that the value of arg max 
u 

f x , u ( )  be calculated repeatedly for various values of x, both during

learning, and when using the system as a controller.  If the state x and action u are discretized, then the function

can be represented as a finite lookup table.  If the state x is a real-valued vector, then the function can be

represented using standard function-representation techniques such as multilayer perceptrons, radial basis

function networks, and memory-based learning and interpolation systems (Atkeson, 1990).  However, if the

action u is also a real-valued vector, then finding the maximum is extremely difficult with most function

approximation systems.  Although Tesauro's TD-Gammon program (Tesauro, 1990, 1992) demonstrates that

some difficult problems can be solved using discrete values for u, most practical problems require real-valued

vectors.  The optimization algorithm described in Baird (1992) can approximate the maximum for optimal

control problems (or the saddle point for differential games), but there may be errors in the maximization during

learning.  Systems using the stochastic real-valued unit (Gullapalli, 1990, 1991) or the Analog Learning Element

(Millington, 1991) can learn real-valued actions without maximizing learned functions, but they require the use of

a particular exploration scheme.  It is desirable for a system to be able to learn under any exploration scheme that

tries all actions in all states sufficiently often.  Q-learning and advantage updating, for example, have this

property.  Also, it would be useful if the power of any general function approximation system could be harnessed

to learn the function, while still allowing the maximum of the function to be found quickly and exactly.  A

method is proposed, wire fitting, that has these desirable properties.



2. MAXIMIZATION OF A FUNCTION

First consider the simpler problem of learning a function f(u) such that it is possible to quickly find the

maximum of the function.  Figure 1 shows one approach to solving this problem.
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Figure 1.  Method for storing a function f(u) such that the maximum can be found quickly.

The shape of the function is determined by three control points (circles).  Six

parameters u1,u2,u3,y1,y2,y3 are initialized to arbitrary values.  As training samples

are observed, the six parameters are adjusted so that f(u) (dotted line) is a good fit

to the training data.  The value of f(u) at point u is defined as a weighted average

of the three yi values, weighted by distance between u and ui, and also by the

distance between yi and ymax.  This ensures that the maximum of f(u) always

occurs at one of the control points, (ui,yi).

The shape of the function f(u) is controlled by six parameters which specify the location of three control

points.  The function f(u) is defined as:
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The function is defined by a weighted-nearest-neighbor interpolation of the three control points.  If equation

(1) is undefined for a given value of u, then f(u) is defined to be max 
i 

y 
i  for that value of u.  The function may not

go through every control point, but it is guaranteed to go through the highest point.  Also, the function is

guaranteed never to go above the highest point or below the lowest point.  Therefore, the maximum of the

function is guaranteed to be located at the ui, which has the same subscript as the maximum yi value.



This function approximation system resembles a memory based learning system, but is different.  In a

memory based learning system, a set of training data is stored and interpolated to give the function f(u).  In the

system described here, the control points are initialized to arbitrary values.  Then, as training data is observed,

the control points shift until f(u) approximates the training data.  For example, if all of the training data lies on

the curve shown in Figure 1, then a gradient-descent learning algorithm will learn to place the three control

points as shown in Figure 1.  The control point (u3,y3), therefore, learns to be much lower than any of the

training data.  Equation (1) might not be a good algorithm for interpolating raw training data, but it may be

useful for learning if the control points shift during learning.  The maximum of the curve f can be found in even

less time than it takes to evaluate f(u) for an arbitrary u, because the maximum can be found without using

equation (1).

There may be uses for a system that can learn f(u) and find the maximum.  It is more useful, however, to

have a system that can learn f(x,u) and can find the u that maximizes the function for any given x.  This can be

done using the same method shown above, but with the parameters ui and yi replaced with functions ui(x) and

yi(x).  In this case, the control points become control wires in a higher-dimensional space, and the function is a

surface fitted to those wires.



3. MAXIMIZATION OF A CROSS SECTION

Wire fitting is a function approximation method designed to facilitate finding the maximum of the function

f(x, u) for any given x.  When using wire fitting, the function f(x, u) is evaluated for a given x and u as shown in

Figure 2.
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Figure 2.  The wire fitting architecture.

A function approximation system learns the function in the lower block.  Given the

state x, this generates a set of control points.  The interpolating function then fits a

function to the set of control points and calculates f(x,u), in the same manner as in

Figure 1.

Any general function approximation system can be used to learn the function marked "learned function" in

Figure 2.  This function generates a set of control points based upon the value of x.  A function is then fitted to

the set of control points, and the value of f is then calculated from u in the manner illustrated in the previous

section.  Since there is a set of control points for every possible x, the control points are actually control curves,

or wires, in a higher-dimensional space.  Thus, the function is actually being fitted to a set of wires rather than to

a set of points.  The action u and the functions ûi  are all vectors with the same number of elements.  The state x

is also a vector, possibly with a different number of elements.  The function f and the functions y 
i  are all scalars,

and f is a weighted average of the set of y 
i .  In a reinforcement learning system, the function f(x, u) typically

represents the utility of performing action u in state x, so the u that maximizes f(x,u) is the optimal action to

perform in state x.  The lower box in Figure 2 can be any function approximation system, such as a multilayer

perceptron trained by backpropagation.  Its only input is the state x.  Its output is a set of vector pairs (ûi, y i ),

which control the shape of the function in state x.  Equation (2) is a continuous, smooth function of its inputs, so

it is possible to backpropagate errors in f back through equation (2) to update weights in the learning system:
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For a given state, the set of vector pairs (ûi, y 
i 
) are interpolated to give f(x,u).  The value y 

max 
 is simply the

maximum of the y i  values.  Equation (2) defines f(x,u) for a particular u to be a weighted average of y i  values.

If u is near a particular ûi, then the corresponding y 
i  is given more weight.  The nonnegative constant

parameters ci determine the amount of smoothing.  If all ci =0, then the interpolation "honors the data", and f= y 
i 

when u= ûi.  If the ci  values are positive, the interpolated function is smoother, and f may not be exactly equal to

y 
i 
, even when u= ûi..  The constants ci  can be chosen a priori, or they can be learned.  As will be shown below,

if the learned function is trained with a memory-based learning method, then the values for ci  can be chosen

arbitrarily, with no effect on learning or performance.  The limit in equation (2) is merely for mathematical

completeness.  It ensures that the function is defined when u= ûi.  The equation can be written without the limit

and � , if it is stated that f(x,u)= y 
i  whenever the coefficient of y 

i  in the summation would be undefined.

The control points (ûi, y 
i 
) serve to shape the function in a given state.  Each control point plays a role

analogous to a knot for a spline or a data point for an interpolation function.  It is also analogous to the

parameters associated with one radial basis function in a radial basis function network.  In each case, the

parameters have a local effect on the shape of the function.  However, Equation 2 has one property that

distinguishes it from other interpolation algorithms.  No matter what values the vector pairs have, it is always the

case that:

max 
u 

f ( x , u ) = max 
i 

y 
i 

x ( ) ≡ y 
max 

( x ) (3)

This is easily proved.  First, consider a value of u not equal to any ûi .  In this case, the expression in

Equation 1 is defined for � =0.  f is then a weighted average of the y 
i , with each weight between zero and one

and the sum of the weights equal to one.  A weighted average of several numbers cannot exceed the largest

number, so f is less than or equal to the maximum y 
i 
, which is y 

max 
.  Next, consider the case in which u is equal

to ûmax, where ûmax, is the ûi with the same subscript as y max .  In this case, as �  goes to zero, the sum in the

numerator comes to be dominated by the term containing ûmax and y 
max , so in the limit f= y 

max .  Lastly, consider

the case in which u= ui _ûmax.  By a similar argument, if ci=0, then f= y 
i _y 

max .  If ci_0, then f is simply a



weighted sum of y 
i , so f_y 

max .  Thus, when u= ûmax, f= y 
max , and for every u_ûmax, f_y 

max .  Therefore,

Equation 3 is true.

Given this method for representing a function f, it is possible to implement a reinforcement learning system

that learns from any sequence of actions.  Any function approximation system can be used as the lower box in

Figure 2.  The system in Figure 2 can be used to quickly calculate the f value for a given state-action pair, f(x, u),

or the optimal action in a state, ûmax(x), or the maximum f value for a state, y 
max (x).  If action u is performed in

state x, then f(x, u) can be calculated immediately.  On the next time step (or several time steps later for

multistep learning), an improved estimate can be calculated for f(x, u) by the reinforcement learning algorithm,

using the value of the new states and the reinforcement received.  This can be used to calculate an error in f(x,

u).  If the learning system is gradient-based, then the error can be propagated back through Equation 2 and

through the learned function, so that f(x, u) moves toward the improved estimate for f(x, u).  Thus, this method

for representing f is flexible, and can be incorporated in a variety of reinforcement learning systems.

This method for representing the function f(x, u) can be represented graphically, as shown in Figure 3.
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Figure 3.  An example of a function f(x,u) whose shape is determined by three wires.

In any given state, such as x0, the wires intersect the plane of that state at three

points.  These three points are the control points that determine the shape of the

function for that value of x.  The shape of the function in that plane is determined

by the location of the three wires, and the function is guaranteed to pass through
the point (ûmax(x0), y max (x0)), which in this example is the point (û2(x0), y 2 (x0)).

The upper graphs in Figure 2 show an example of a function f(x,u), where x and u are scalars.  The graph on

the left is the f function itself, while the one on the right shows three control wires superimposed on the picture.

The lower graph is a cross section of the function, taken at state x0.  The set of all points of the form (x, ûi(x),

y i (x)) forms the ith wire in 3-D space.  The shape of the surface is then determined by the shape and location of

the control wires.  The shape of the function in this example is determined by three wires: A high, curved wire



(dark gray), a medium, curved wire (light gray), and a low, straight wire (black).  Although the surface does not

touch the wires at every point, it is drawn toward them, and so consists of two intersecting ridges with a valley

between them.  Where the ridges intersect, the surface rises to the highest wire.  In this example each wire has a

constant height but, in general, a wire could have a varying height.  The lower picture in Figure 2 shows a cross

section of the graph on the right for a particular state, x0.  Each wire intersects the plane of x0 at a point, so the

three wires define three control points.  The learning system learns the location of each control point in each

state.  The surface is defined by Equation 2, which ensures that the highest point on the surface will lie on one of

the control points within the cross section at any given state.



4. MEMORY -BASED LEARNING

The method presented here for representing a function can be used with a variety of function representation

systems.  It is clear how it could be used with a gradient-based function approximation system.  The error in f

can be propagated back through equation (2) (which is differentiable), to change the weights in the learning

system.  This causes the control wires to shift until the surface has the appropriate shape to minimize the mean

squared error in f.  It may be less clear how it could be used with a memory-based function approximation

system, so we elaborate upon that alternative in this section.

For a memory-based function approximation system, the stored information will comprise a set of triplets

(xt, ut, Et).  If action ut is performed in state xt at time t, the system will output f(xt,ut).  The reinforcement

learning algorithm then calculates an estimate Et of what f(xt,ut) should have been, based on the results of

performing action ut in state xt.  Once this estimate has been calculated, the triplet (xt, ut, Et) can be stored.  The

functions ûi(x) and yi(x) can be calculated from the set of stored memories.  If old memories are eventually lost,

perhaps because of a finite-sized memory set, then the ûi(x) and yi(x) functions would be expected to improve

with experience, yielding memory-based learning.

Memory-based learning has an advantage relative to gradient learning systems when used with wire fitting.

It is possible to calculate and store each triplet without calculating f(x, u).  In a gradient learning system, the

output of the system must be calculated so that an error can be found to drive learning.  In a memory-based

system, examples of inputs and desired outputs are simply stored, and the actual outputs f(x, u) need not be

calculated.  Thus, for the particular case of a memory-based learning system, Equation 2 need never be

evaluated.  This not only saves calculation time, but also simplifies the system because the constants ci do not

have to be chosen or learned.

An important question for a memory-based system is that of how the functions ûi(x) and yi(x) can be

calculated from the set of stored data.  In Figure 3, this would correspond to the question of how several wires

can be created that will generate a surface that is a reasonable approximation to a set of data points scattered

throughout the cube.  If there are n functions ûi(x) and yi(x), then every state will intersect n of the wires.  One

possible solution is presented next.

For a given state x, the functions ûi(x) and yi(x) are defined by Equations 4 through 10.  If there are n wires,

then there will be a wire associated with each of the n data points nearest to state x (Euclidean distance).  The ith

wire will not necessarily go through the ith data point, but ûi(x) will typically be fairly close to the u component



of the associated data point.  In the equations that follow, t is an index that ranges over all stored data points.

The index i ranges over those data points that are associated with wires.  States and actions are vectors.  The

subscript k represents the kth element of an action vector, and the subscript L represents the Lth element of a

state vector:
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Each of the n data points (xt, ut, Et) is projected into the plane of the current state x, to give a projected

point (x, ut, Et).  These points are locations where estimates of the value of f should be most reliable.  All of the

data points (not just the n closest) have an effect on the wire associated with each projected point.  The effect of

the tth data point on the ith wire is inversely proportional to its distance from the projection, and is given by

Equation 4.  Equations 5 through 8 perform weighted linear regression.  This gives an estimate of the direction

one should move from the projected point to maximize the function f(x, u).  Equations 9 and 10 place the

location of the ith wire (ui(x), yi(x)) near the projected point, slightly uphill in the direction found by weighted

linear regression.  Thus, each wire comprises a local estimate of an action that would maximize f, and an estimate

of the f value for that action.  The linear regression is done separately for each dimension.  For high-dimensional

action vectors, this is less computationally intensive than doing multidimensional linear regression.  The results

are the same when the stored values (xt, ut) are evenly distributed (have zero covariance).  If the state-action

space is explored unevenly, then the stored values may not be evenly distributed, and it may be necessary to

perform an affine transformation on the data to give zero covariance.



5. SIMULATION RESULTS

The wire fitting approach was tested by incorporating it into a reinforcement learning system used to control

an inverted pendulum hinged to a cart moving on an infinite track.  Q-learning was used for the reinforcement

learning algorithm, and a memory-based learning system was used as the function approximation system.  The

equations for the cart-pole system are:

m 
c 

+ m 
p ( ) • • x + m 

p 
l • • θ cos θ − m 

p 
l θ 2 sin θ = f − µ 

c 
sgn • x (11)

4 
3 m 

p 
l 2 • • θ + m 

p 
l • • x cos θ − m 

p 
glsin θ = − µ p 

• θ (12)

where:

x = position of the cart (m)
�

= pole angle (rad)

g = 9.8 m/s2 acceleration due to gravity

mc = 1.0 kg mass of the cart

mp = 0.1 kg mass of the pole

l = 0.5 m pole half-length
�

c = 0.0005 N friction between cart and track
	

p = 0.000002 N
 m� s friction between pole and cart

|f| _ 10.0 N force applied to cart

The cart-pole system was simulated by Euler integration at 50 Hz.  Reinforcement was proportional to the

pole angle squared, with an additional negative reinforcement when the pole exceeded 12 degrees from vertical.

The learning system was allowed to learn for only 60 seconds of simulated time, during which a random action in

the range [-10,10] newtons was chosen with uniform probability on each time step.  This training data contained

information on only a small portion of the state space, so the learning system was forced to generalize.  The

learning system was able to balance the pole indefinitely after 60 seconds of training time, after which learning

was disabled.  When the learning system was applied to a finite-track, cart-pole problem, it was not able to learn

to control the cart and pole consistently.  This appears to be due to the fact that a time step was only 0.02

second.  Baird (1993) explains why Q-learning cannot learn in continuous time (or discrete time with small time

steps), and proposes a new algorithm, advantage updating, which does not have this limitation.  Advantage

updating could be combined with wire fitting and a function approximation system; this remains an area for

future research.



6. CONCLUSION

We have proposed wire fitting, a new method for representing functions using any general function

approximation system.  This method solves the maximization problem arising in reinforcement learning systems

and offers several other advantages.  We have presented an example of a memory-based system that may be used

with the method to represent Q functions, and have shown how the method, combined with the memory-based

system, can be used for reinforcement learning on a cart-pole control problem.
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