
Spurious Solutions to the Bellman Equation

Mance E. Harmon
Wright Laboratory

WL/AACF
2241 Avionics Circle

WPAFB, OH 45433-7318
harmonme@aa.wpafb.mil

Leemon C. Baird III
U.S.A.F. Academy

2354 Fairchild Dr. Suite 6K41
USAFA, CO 80840-6234

baird@cs.usafa.af.mil

Abstract

Reinforcement learning algorithms often work by finding functions
that satisfy the Bellman equation. This yields an optimal solution for
prediction with Markov chains and for controlli ng a Markov decision
process (MDP) with a finite number of states and actions. This
approach is also frequently applied to Markov chains and MDPs with
infinite states. We show that, in this case, the Bellman equation may
have multiple solutions, many of which lead to erroneous predictions
and policies (Baird, 1996). Algorithms and conditions are presented
that guarantee a single, optimal solution to the Bellman equation.

1 REINFORCEMENT LEARNING AND DYNAMIC PROGRAMMING

1.1 THE BELLMAN EQUATION

Reinforcement learning algorithms often work by using some form of dynamic
programming to find functions that satisfy the Bellman equation. For example, in a
pure prediction problem, the true, optimal value of a state, V* (xt), is defined as equation
(1), where < > represents the expected value, taken over all possible sequences of states
after time t, γ is a discount factor between zero and one exclusive, and R is the
reinforcement received on each time step.

 V * (xt) = Rt + γRt+1 + γ 2Rt + 2 + γ 3Rt +3 + Κ (1)

It is clear from equation (1) that there is a simple relationship between successive states.
This relationship is given in equation (2), and is referred to as the Bellman equation for
this problem.

V * (xt) = Rt + γV * (x t+1) (2)

Bellman equations can be derived similarly for other algorithms such as Q-learning
(Watkins, 1989) or advantage learning (Baird, 1993, Harmon and Baird, 1996).

1.2 UNIQUE SOLUTIONS

A learning system will maintain an approximation V to the true answer V*, and the
difference between the two can be called the error e, defined in equation (3). Equation
(4) shows why dynamic programming works. If the learning system can find a function
V that satisfies equation (2) for all states, then equation (4) will also hold for all states.

V(x t) = V * (x t) + e(x t) (3)

V * (xt) + e(xt) = Rt + γ V * (xt +1) + e(x t+1)()
V * (xt) + e(xt) = Rt + γV * (xt +1) + γ e(xt +1)

e(xt) = γ e(xt +1) (4)

Suppose there are a finite number of states, and call the state with the largest error state
xt. The discount factor γ is a positi ve number less than 1, so equation (4) says that the
largest error is equal to only a fraction of a weighted average of all the errors. The only
way this could happen is if all the errors were zero. Thus, for a finite number of states,
the Bellman equation has a unique solution, and that solution is optimal.

On the basis of this result, reinforcement learning systems have been created that simply
try to find a function V that satisfies the Bellman equation (e.g., Tesauro, 1994; Crites
and Barto, 1995). But will such a V will be optimal, even when there are an infinite
number of states? Can we assume that the finite-state results will also apply to the
infinite-state case?

2 SPURIOUS SOLUTIONS

It would be useful to determine under what conditions dynamic programming is
guaranteed to find not only a value function that satisfies equation (4), but also a value
function whose value error, defined in equation (5), is zero for all x.

e(x) = V * (x) − V(x) (5)

One solution to equation (4) is the optimal value function V*. However, in many cases
there might exist more than a single, unique solution to the Bellman equation (Baird,
1996). If there is a finite number of states then there does exist a unique solution to
equation (4). If there is an infinite number of states then there may exist an infinite
number of solutions to the Bellman equation, including some with a suboptimal value
function or policy.

2.1 THE INFINITE-HALL PROBLEM

Consider the simple case of a Markov chain with countably-infinite states, named 0, 1,
2, ..., and with a reinforcement of zero on every transition (Figure 1).

1 2• 3 4 5
0 0 0 0 0

Figure 1: Infinite Markov chain

On each time step, the state number is increased by one. The Bellman equation, error
relationship, and general solution for this Markov chain are given in equations (6), (7),
and (8) respectively.

V(x t) = γV(xt +1) (6)

e(xt) = γe(x t) (7)

V(x t) = kγ −t (8)

When k=0 this is the optimal answer, when k is positi ve the value function will be much
too high, and when k is negative it will be much too low. But in every case, the function
satisfies the Bellman equation. The problem is that a solution to the Bellman equation
only ensures that each error will be less than the successive error. If the trajectory of
states never crosses itself, then there is no reason that the error cannot grow without
bound.

For most MDPs, the reinforcement R is bounded between Rmax and Rmin, and so the
optimal value function V* is also bounded by R max(1− γ)−1 and R min(1− γ)−1 . If the error
is growing exponentiall y, and the optimal value function is bounded, that implies that V
will be growing exponentiall y. This suggests that spurious solutions to the Bellman
equation are theoreticall y possible, but not a problem in practice, because all the
suboptimal solutions will have functions that grow exponentiall y, and the typical
function approximation system will not be able to represent them. Unfortunately, that is
not true, as can be seen by a simple example.

Consider a regulator problem where the state changes at a rate proportional to the
current state and control action. The problem is to find the value of the states for a
given policy that causes the state to double on each step. The reinforcement R=0 and
the discount factor γ=0.5 (Figure 2).

R R R
1 2 4 8

R R R
1 6 3 2 6 4

R ∞
Figure 2

The Bellman equation and general solution to this problem are given in equations (9)
and (10). The value function is correct at x=0, because this state loops back to itself.
The value function can be grossly incorrect for all other values of x. In fact, if a linear
function approximator is used with a single weight, then every function it can represent
will also be a solution to the Bellman equation. As this ill ustrates, it is possible for a
function-approximation system to converge to a spurious solution, or to have the initial
random weights constitute a spurious solution.

V(x t) = 0.5V(xt +1) = 0.5V(2x t) (9)

V(x t) = kxt (10)

2.2 WHAT CONDITIONS CAUSE SPURIOUS SOLUTIONS?

It would be useful to determine under what conditions dynamic programming is
guaranteed to find not only a value function that satisfies the Bellman equation, but also
a value function whose value error, defined as the difference between the optimal value
function and the value function estimate, is zero for all x. To do this, we first
determined under what conditions spurious solutions might exist.

For each of the following examples it is assumed that the reinforcement function R and
the optimal value function V* are bounded, the number of states is infinite, and the same
state is never visited more than once by the poli cy. If the speed is constant, as depicted
in Figure (3), there can exist an infinite number of solutions if the value function grows
exponentiall y. Also, in the case that the speed is not fixed but decays exponentiall y,
there can exist an infinite number of solutions to the Bellman equation if the value
function goes to infinity at a point (Figure 4). When the value function does not grow
exponentiall y, an infinite number of solutions might still exist if the speed at which
states are visited is increasing exponentially (Figure 5).

Finall y, Figure (6) depicts the case where the state is bounded, the value function is
unbounded, and the slope of the value function is unbounded. Given these
circumstances, there exists an infinite number of solutions to the Bellman equation.
Each of these examples have one thing in common, no state is revisited a second time.
If these two conditions hold, spurious solutions to the Bellman equation can exist.
However, it is possible to remedy the situation by adding some minor constraints.

.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

St at e

V a l u e (e r r o r)

0

50

100

150

200

250

300

1 50 100
S t at e

T ime
10 2 3 4 5 6 7 8 9

Figure 3: Constant speed Figure 4: Exponentially decaying speed

.

V a l u e (e r r o r)

0

1

2

3

4

5

6

7

8

1 10 100 1000

St at e

Figure 5: Exponentially increasing speed Figure 6: Bounded states, unbounded

value function, unbounded slope

3 ENSURING UNIQUE SOLUTIONS

In Section 2 we considered the causes of spurious solutions in prediction problems. We
now discuss how to prevent spurious solutions not only in problems of prediction but
also control, and we restrict our discussion to MDPs with finite action sets. The same
conditions that cause spurious solutions in Markov chains also cause spurious solutions
in Markov decision processes.

It may be observed that all sub-optimal value functions that satisfy the Bellman equation
grow without bound. Only the value function that satisfies the Bellman equation and
has a zero value error for all x is guaranteed to be bounded. In fact, all spurious
solutions to the Bellman equation require the value function to grow without bound, if
the reinforcement is bounded and the equation must be satisfied over all of state space.
However, if the reinforcement function is bounded and the discount factor γ is less than
1, then there does exist a unique solution to the Bellman equation in which the value
function does not grow without bound and the error function is zero over all of state
space.

This suggests that by bounding the value function and training over all of state space a
unique solution to the Bellman equation is ensured. One can accomplish this practicall y
by passing the output of the function approximation system representing the value
function through a sigmoid. The lower and upper bounds of the sigmoid are given in
equations (11) and (12). This method is useful not only for Markov chains but also for
both deterministic and non-deterministic Markov decision processes.

Vmax =
R

max

1− γ
(11)

Vmin =
R

min

1− γ
(12)

3.1 UNBOUNDED STATE SPACES

To guarantee a unique solution to the Bellman equation for both Markov chains and
MDPs with finite action sets, one can bound the value function and train over all of state
space. The question then becomes one of how to train over all of an unbounded state
space. Training over a bounded region of state space when state space is unbounded
might result in sub-optimal solutions.

One solution is to map all of state space to a bounded region, then train uniformly over
this region. For example, if the state space is the real number line, then one might use
the mapping f (x) = (1+ e−x)−1 . When training in state x, the input to the neural network
would be f(x). Random states would be generated during training by choosing random
numbers r between 0 and 1, then letting x=f-1(r). In addition, for radial basis function
networks, there is an additional advantage to using f(x) as the network input rather than
using x as the input. When x is the input, the RBF network will always learn to have
zero outputs for suff iciently-large values of x. When the input is f(x), the network has
the flexibility to have either zero or non-zero outputs as x goes to infinity.

When training on trajectories in an unbounded state space, it is possible that no
terminating state exists. In this case, to perform a single update, one is required to
follow all possible trajectories from an initial state, each of which may visit an infinite

number of states. This must be done for an infinite number of initial states. For this
reason, training can only be accomplished in practice by training on randomly generated
state samples.

3.2 TRAINING ON A SUBSET

In many real-world problems (e.g., regulator problems), we can only train on a subset of
the state space, but we know that the optimal poli cy will stay within that subset. In this
case (when the optimal poli cy is bounded), one has the option of training only on this
bounded region of state space. Bounded optimal poli cy is defined as follows: if
following the optimal poli cy π* from a given set of initial states, a bounded region of
state space exists whose boundary is never crossed. This region is defined as the training
region of state space. Again, it is assumed that the reinforcement function is bounded,
that γ is a positi ve number less than 1, and the value function is bounded (for reasons
stated earlier).

If the optimal poli cy π* is bounded, the system is deterministic, and a lookup table is
being used to store the function (or any function approximator that does not generali ze),
the following method will guarantee a unique solution to the Bellman equation.
Consider the case for which the learning algorithm learns a function of state-action
pairs. During training, if the exploration poli cy causes a transition across the boundary
of the training region from state xt to xt+1, one could train the Q-value for the chosen
state-action pair to be ε smaller than the maximum Q value in state xt (when trying to
maximize total discounted reinforcement). This will always train the Q-value for the
state-action pair that transitions to a state across the boundary to have a value ε less than
the maximum Q-value in the current state (assuming the exploration poli cy chooses
state-action pairs with uniform random probabilit y across all possible state-action pairs
in a given state). This, in turn, necessaril y means that a state-action pair that causes a
transition across the training region boundary will not have the maximum Q-value for
the given state. The same principle can be applied to systems that learn a value function
rather than a function of state-action pairs.

3.3 NONDETERMINISTIC MDPs

When the system is non-deterministic, or when using a function approximator that
generali zes to represent the value function, it becomes necessary to artificiall y value
states outside the training region such that anytime a chosen action causes a transition
across the boundary of the training region, the successor state has a large negative value
(when maximizing total discounted reinforcement) or large positi ve value (when
minimizing total discounted reinforcement). The magnitude of the values outside the
training region must also grow over time, forcing the system to learn not to choose an
action that has a non-zero probabilit y of crossing the training boundary. This forces the
system to learn a poli cy that stays within the training region, provides a general
solution, and is independent of the reinforcement learning algorithm being used. For
reinforcement learning algorithms that learn a function of state-action pairs there is an
alternative. The desired effect can still be accomplished if updates to the value function
(Q-function, advantage function, etc.) approximation occur only when following the
current action poli cy causes a transition across the training region boundary. If
following the exploration poli cy during training causes a transition across the training
boundary, no learning should be accomplished for that training transition and a new
trial should be started.

Two problems are associated with these methods of training. First, one must have a
priori knowledge of the optimal poli cy so that a reasonable training region can be
defined. Second, if the values of the states outside of the training region are defined to

be too high or too low then the value function being learned has steep slopes (spikes) at
the boundary edges. These, in turn, may slow learning for function approximation
systems that generali ze. The effects of the “spikes” can be mitigated by defining the
training region boundaries to be relatively distant from states visited when following the
optimal poli cy from a set of initial states, and thus ensure a smooth value function across
the region of state space visited when following the optimal policy.

4 EMPIRICAL RESULTS

To demonstrate that spurious solutions can be a problem in practice, we consider a
Markov decision process in which there are countably infinite states. In each state are
two possible actions: return to the current state or transition to the successor state. The
MDP has states labeled 0.1, 0.2, 0.3, ... , and reinforcements as shown in Figure (7).

-0.25
0 .1
1

∞0 .2
1

0 .3

1
0 .4
1

0 .5
1

0 .6
1

-0.2 -0.15 -0.1 -0.05 0

0 .1

1

0 .2

1

0 .3

1
0 .4

1

0 .5

1

0 .0

1Figure 7: Values on arcs are reinforcements received for the given action.

For this example we used residual gradient value iteration (Baird, 1995). The value
function is represented with a single sigmoidal node. The output of the node is bounded
from [-1,1]. The input to the node is the weighted sum of the state and a bias. The value
of a state is the weighted output of the hidden node. The update equation is:

w = w + α max
x t+1

R(xt ,xt +1) + V(xt +1)()− V(x t)[]γ
∂V(xt +1)

∂w
−

∂V (xt)

∂w

 


  (13)

In equation (13) w is the weight vector containing the parameters of the node, α is the
learning rate and has a fixed value of 0.09, γ is the discount factor and has a value of
0.9, and R(xt,xt+1) represents the reinforcement received when transitioning from state xt

to state xt+1. The weights were initiali zed to lie between [-1x10-8,1x10-8]. We trained for
one milli on iterations over the first five states of the MDP. In each iteration, a state was
randomly chosen for training from a uniform probabilit y distribution over the set of
training states.

The system learned a value function that reduced the Bellman residual but did not
reduce the value error. Furthermore, the poli cy resulting from the learned function was
incorrect for all states in the training set. Figure (8) shows the optimal value function
V* and the learned value function V.

Figure 8: Learned value function V and

optimal value function V*

5 SUMMARY

Ordinary function approximators, when used to
solve simple prediction and control problems, can
converge to spurious solutions of the Bellman
equation, yielding grossly incorrect predictions
and policies. Algorithms and conditions have
been presented that guarantee a single, optimal
solution to the Bellman equation. It may be

important to take these into account when using reinforcement learning for prediction or
control.

.

Value Funct ions

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5

St at es

V a l u e s

V *

V

Acknowledgments This research was supported under Task 2312R1 by the United
States Air Force Office of Scientific Research.

References

Baird, L. C. (1996). Spurious Bellman-equation solutions. (Internal Tech Report)
Department of Computer Science, USAF Academy.

Baird, L. C. (1993). Advantage updating (DTIC Report AD WL-TR-93-1146, available
from the Defense Technical Information Center, Cameron Station, Alexandria, VA
22304-6145). Wright-Patterson Air Force Base, OH.

Baird, L. C. (1995). Residual Algorithms: Reinforcement Learning with Function
Approximation. In Armand Priediti s & Stuart Russell , eds. Machine Learning:
Proceedings of the Twelfth International Conference, 9-12 July, Morgan Kaufman
Publishers, San Francisco, CA.

Crites, R. H., and Barto, A. G. (1996). Improving elevator performance using
reinforcement learning. To appear in Advances in Neural Information Processing
Systems 8, D. S. Touretzky, M. C. Mozer, M. E. Hasselmo, eds., MIT Press.

Harmon, M. E., and Baird, L. C. (1996). Multi-agent residual advantage learning with
general function approximation. (Internal Tech Report). Wright Laboratory, Wright-
Patterson Air Force Base, OH.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation 6:215-219.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Doctoral thesis,
Cambridge University, Cambridge, England.

