Spurious Solutions to the Bellman Equation

Mance E. Harmon Leemon C. Baird |11
Wright Laboratory U.S.A.F. Academy
WL/AACF 2354 Fairchild Dr. Suite 6K41
2241 Avionics Circle USAFA, CO 80840-6234
WPAFB, OH 45433-7318 baird@cs.usafa.af.mil

harmonme@aa.wpafb.mil

Abstract

Reinforcement learning algorithms often work by finding functions
that satisfy the Bellman equation. This yields an optimal solution for
prediction with Markov chains and for controlling a Markov dedsion
process (MDP) with a finite number of states and actions. This
approach is also frequently applied to Markov chains and MDPs with
infinite states. We show that, in this case, the Bellman equation may
have multiple solutions, many of which lead to erroneous predictions
and policies (Baird, 1996. Algorithms and conditions are presented
that guarantee a single, optimal solution to the Bellman equation.

1 REINFORCEMENT LEARNING AND DYNAMIC PROGRAMMING

1.1 THE BELLMAN EQUATION

Reinforcement learning algorithms often work by using some form of dynamic
programming to find functions that satisfy the Belman eguation. For example, in a
pure prediction problem, the true, optimal value of a state, V*(x,), is defined as equation
(1), where < > represents the expeded value, taken over all possble sequences of states
after time t, y is a discount factor between zero and one eclusive, and R is the
reinforcement received on each time step.

V*(Xl):<R +R+1+y2R!+2+y3RH3+K> (l)
It is clear from equation (1) that there is a smple relationship between successve states.

Thisrelationship is given in equation (2), and is referred to as the Bellman equation for
this problem.

V* (x)=AR + W * (X.,)))

Bellman equations can be derived similarly for other algorithms such as Q-learning
(Watkins, 1989) or advantage learning (Baird, 1993, Harmon and Baird, 1996).

1.2 UNIQUE SOLUTIONS

A learning system will maintain an approximation V to the true answer V*, and the
difference between the two can be @lled the eror e, defined in equation (3). Equation
(4) shows why dynamic programming works. If the learning system can find a function
V that satisfies equation (2) for all states, then equation (4) will also hold for all states.

V(x)=V*(x) +&x) @)

Vv (Xz) +e(X,) = \R + y(V* (X1+1) + e(Xt+1))>

V* (x)+e(x) ={R+W* (%)) +yie(X.))
e(x) = yie(X..)) 4)

Suppose there are a finite number of states, and call the state with the largest error state
X. The discount factor y is a positive number lessthan 1, so equation (4) says that the
largest error is equal to only a fraction of a weighted average of all the arors. The only
way this could happen isif all the erors were zero. Thus, for a finite number of states,
the Bellman equation has a unique solution, and that solution is optimal.

On the basis of this result, reinforcement learning systems have been created that smply
try to find a function V that satisfies the Bellman equation (e.g., Tesauro, 1994 Crites
and Barto, 1995. But will such a V will be optimal, even when there are an infinite
number of states? Can we asaume that the finite-state results will also apply to the
infinite-state case?

2 SPURIOUS SOLUTIONS

It would be useful to determine under what conditions dynamic programming is
guarantedl to find not only a value function that satisfies equation (4), but also a value
function whosevalue error, defined in equation (5), is zero for all

e(x) =V*(x)-V(x) (5)

One solution to equation (4) is the optimal value function V*. However, in many cases
there might exist more than a single, unique solution to the Bellman equation (Baird,
1996. If there is a finite number of states then there does exist a unique solution to
equation (4). If there is an infinite number of states then there may exist an infinite
number of solutions to the Bellman equation, including some with a suboptimal value
function or policy.

2.1 THE INFINITE-HALL PROBLEM

Consider the simple @se of a Markov chain with countably-infinite states, named O, 1,
2, ..., and with a reinforcement of zero on every transition (Figure 1).

O O O O s O Ll
Figure 1: Infinite Markov chain

On each time step, the state number is increased by one. The Bellman equation, error
relationship, and general solution for this Markov chain are given in eguations (6), (7),
and (8) respectively.

V(X) = W(X..) (6)
e(x) = y&x,) (7)
V(x)=ky" 8)

When k=0 thisisthe optimal answer, when K is positi ve the value function will be much
too high, and when K is negative it will be much toolow. But in every case, the function
satisfies the Bellman equation. The problem is that a solution to the Bellman equation
only ensures that each error will be lessthan the successve eror. If the trajedory of
states never crossss itsdf, then there is no reason that the eror cannot grow without
bound.

For most MDPs, the reinforcement R is bounded between R, and R, and so the
optimal value function V* isalso bainded by Rma(1-y)™ and Rmn(l—y)™. If the @ror
is growing exponentially, and the optimal value function is bounded, that implies that V
will be growing exponentially. This s1ggests that spurious lutions to the Bellman
equation are theoretically posshle, but not a problem in practice becuse al the
suboptimal solutions will have functions that grow exponentialy, and the typica
function approximation system will not be able to represent them. Unfortunately, that is
not true, as can be seen by a simple example.

Consider a regulator problem where the state dhanges at a rate proportional to the
current state and control action. The problem is to find the value of the states for a
given palicy that causes the state to double on each step. The reinforcement R=0 and
the discount factoy=0.5 (Figure 2).

@L@L@L>—R> 00 O
Figure2

The Bellman equation and general solution to this problem are given in equations (9)
and (10). The value function is corred at X=0, becuse this gate loops back to itsalf.
The value function can be grosdy incorred for al other values of x. In fact, if a linear
function approximator is used with a single weight, then every function it can represent
will also ke a solution to the Bellman equation. As this ill ustrates, it is posshle for a
function-approximation system to converge to a spurious lution, or to have the initial
random weights constitute a spurious solution.

V(x) = 0.5V(x.,) = 0.5V(2x,) 9)

V(%) = kx (10)

2.2 WHAT CONDITIONS CAUSE SPURIOUS SOLUTIONS?

It would be useful to determine under what conditions dynamic programming is
guarantedl to find not only a value function that satisfies the Bellman equation, but also
a value function whose value aror, defined as the difference between the optimal value
function and the value function estimate, is zero for al x. To do this, we first
determined under what conditions spurious solutions might exist.

For each of the following examples it is asaumed that the reinforcement function R and
the optimal value function V* are bounded, the number of statesisinfinite, and the same
state is never visited more than once by the policy. If the speel is constant, as depicted
in Figure (3), there @n exist an infinite number of solutions if the value function grows
exponentially. Also, in the @se that the speeal is not fixed but decays exponentially,
there @n exist an infinite number of solutions to the Bellman equation if the value
function goes to infinity at a point (Figure 4). When the value function does not grow
exponentialy, an infinite number of solutions might till exist if the speed at which
states are visited is increasing exponentially (Figure 5).

Finally, Figure (6) depicts the @ase where the state is bounded, the value function is
unbounded, and the dlope of the value function is unbounded. Given these
circumstances, there ists an infinite number of solutions to the Belman equation.
Each of these examples have one thing in common, no state is revisited a secnd time,
If these two conditions hold, spurious lutions to the Bellman equation can exist.
However, it is possible to remedy the situation by adding some minor constraints.

Time
300 01 2 3 4 5 6 7 8 9
300
250 [
250
200 —+
g 200
150 5
150
100 —+ o 9
S@S0 DO EIOO
50 —
50
o + t
1 2 3 4 5 6 7 8 9 n 4 -
State 1 50 100
State
Figure 3: Constant speed Figure 4: Exponentially decaying speed
8 » v
7
6 4
5
4 - H
:
3 s
>a 3o
1
0 | |
1 10 100 1000
State

Figure5: Exponentially increasing speed Figure 6: Bounded states, unbounded
value function, unbounded slope

3 ENSURING UNIQUE SOLUTIONS

In Sedion 2 we mnsidered the @uses of spurious olutions in prediction probems. We
now discuss how to prevent spurious lutions not only in problems of prediction but
also control, and we restrict our discusgon to MDPs with finite action sets. The same
conditions that cause spurious lutions in Markov chains also cause spurious lutions
in Markov decision processes.

It may be observed that all sub-optimal value functions that satisfy the Bellman equation
grow without bound. Only the value function that satisfies the Bellman equation and
has a zro value aror for all x is guaranteed to be bounded. In fact, al spurious
solutions to the Bellman equation require the value function to grow without bound, if
the reinforcament is bounded and the equation must be satisfied over all of state space
However, if the reinforcement function is bounded and the discount factor y is lessthan
1, then there does exist a unique solution to the Bellman equation in which the value
function does not grow without bound and the eror function is zero ower al of state
space.

This suggests that by bounding the value function and training over all of state space a
unique solution to the Bellman equation isensured. One an accomplish this practically
by passng the output of the function approximation system representing the value
function through a sigmoid. The lower and upper bounds of the sigmoid are given in
equations (11) and (12). This method is useful not only for Markov chains but also for
both deterministic and non-deterministic Markov decision processes.

V= e (11)

V= (12)

3.1 UNBOUNDED STATE SPACES

To guarantee a unique solution to the Bellman equation for bath Markov chains and
MDPs with finite action sets, one @an bound the value function and train over all of state
space The question then beames one of how to train over al of an unbounded state
gpace Training over a bounded region of state space when state space is unbounded
might result in sub-optimal solutions.

One solution is to map all of state space to a bounded region, then train uniformly over
thisregion. For example, if the state space is the real number line, then one might use
the mapping f(x)=(1+e™)™". When training in state x, the input to the neural network
would be f(x). Random states would be generated during training by choasing random
numbers r between 0 and 1, then letting x=F*(r). In addition, for radia basis function
networks, there is an additional advantage to using f(x) as the network input rather than
using x as the input. When x is the input, the RBF network will always learn to have
zero autputs for sufficiently-large values of x. When the input is f(x), the network has
the flexibility to have either zero or non-zero outputg gees to infinity.

When training on trajedories in an unbounded state space it is posdble that no
terminating state eists. In this case, to perform a single update, one is required to
follow all posgble trajedories from an initial state, each of which may visit an infinite

number of states. This must be done for an infinite number of initial states. For this
reason, training can only be accompli shed in practice by training on randomly generated
state samples.

3.2 TRAINING ON A SUBSET

In many real-world problems (e.g., regulator problems), we @an only train on a subset of
the state space, but we know that the optimal policy will stay within that subset. In this
case (when the optimal policy is bounded), one has the option of training only on this
bounded region of state space Bounded optimal policy is defined as follows: if
following the optimal policy T from a given set of initial states, a bounded region of
State space «ists whose boundary is never crossed. Thisregion is defined as the training
region of state space Again, it is assumed that the reinforcement function is bounded,
that y is a positive number lessthan 1, and the value function is bounded (for reasons
stated earlier).

If the optimal policy 1 is bounded, the system is deterministic, and a lodkup table is
being used to store the function (or any function approximator that does not generalize),
the following method will guarantee a unique solution to the Bellman equation.
Consider the @se for which the learning algorithm learns a function of state-action
pairs. During training, if the exploration policy causes a transition acrossthe boundary
of the training region from state x; to X1, one wuld train the Q-value for the chosen
state-action pair to be € smaller than the maximum Q value in state x; (when trying to
maximize total discounted reinforcement). This will always train the Q-value for the
state-action pair that transitions to a state acrossthe boundary to have a value € lessthan
the maximum Q-value in the arrrent state (asauming the exploration policy chooses
state-action pairs with uniform random probability acrossall posshle state-action pairs
in agiven state). This, in turn, necessarily means that a state-action pair that causes a
transition acrossthe training region boundary will not have the maximum Q-value for
the given state. The same principle @n be applied to systems that learn a value function
rather than a function of state-action pairs.

3.3 NONDETERMINISTIC MDPs

When the system is non-deterministic, or when using a function approximator that
generali zes to represent the value function, it becomes necessary to artificially value
states outside the training region such that anytime a chosen action causes a transition
acrossthe boundary of the training region, the successor state has a large negative value
(when maximizing total discounted reinforcement) or large positive value (when
minimizing total discounted reinforcement). The magnitude of the values outside the
training region must also grow over time, forcing the system to learn not to choose an
action that has a non-zero probability of crossng the training boundary. This forces the
system to learn a policy that stays within the training region, provides a general
solution, and is independent of the reinforcement learning algorithm being used. For
reinforcement learning algorithms that learn a function of state-action pairs there is an
aternative. The desired effed can still be accomplished if updates to the value function
(Q-function, advantage function, etc.) approximation occur only when following the
current action policy causes a transition across the training region boundary. If
following the exploration policy during training causes a transition acrossthe training
boundary, no learning should be accomplished for that training transition and a new
trial should be started.

Two problems are assciated with these methods of training. First, one must have a
priori knowledge of the optimal policy so that a reasonable training region can be
defined. Seoond, if the values of the states outside of the training region are defined to

be too high or too low then the value function being learned has seqy dopes (spikes) at
the boundary edges. These, in turn, may dow learning for function approximation
systems that generalize. The dfeds of the “spikes’ can be mitigated by defining the
training region boundaries to be relatively distant from states visited when foll owing the
optimal policy from a set of initial states, and thus ensure a smoath val ue function across
the region of state space visited when following the optimal policy.

4 EMPIRICAL RESULTS

To demonstrate that spurious olutions can be a problem in practice we mnsider a
Markov dedsion processin which there are countably infinite states. In each state are
two possble actions: return to the airrrent state or transition to the succesor state. The
MDP has states labeled 0.1, 0.2, 0.3, ..., and reinforcements as shown in Figure (7).

-0.25 -0.2 -0.15 -0.1 -0.05 0
'—> © 0 00
0.0 0.1 0.3 0.4 0.5

0.2
Figure 7: Values on arcs arereinforcementsreceived for the given action.

For this example we used residual gradient value iteration (Baird, 1995. The value
function is represented with a single sigmoidal node. The output of the node is bounded
from [-1,1]. Theinput to the node is the weighted sum of the state and a bias. The value
of a state is the weighted output of the hidden node. The update equation is:

w=wsafpadRx,) + Vi) -vin) fr P -Z8E)

In equation (13) w is the weight vedor containing the parameters of the node, a is the
learning rate and has a fixed value of 0.09, y is the discount factor and has a value of
0.9, and R(X,X+1) represents the reinforcement receved when transitioning from state x,
to state .., The weights were initi ali zed to li e between [-1x10® 1x10%). We trained for
one milli on iterations over thefirst five states of the MDP. In each iteration, a state was
randomly chosen for training from a uniform probebility distribution over the set of
training states.

The system learned a value function that reduced the Bellman residual but did not
reducethe value eror. Furthermore, the palicy resulting from the learned function was
incorred for al statesin the training set. Figure (8) shows the optimal value function
V* and the learned value functidh

Figure 8: Learned value function V and

Value Functions optimal value function V*

> v 5 SUMMARY
25 Ordinary function approximators, when used to
@1:: v solve simple prediction and control problems, can
. converge to spurious lutions of the Bellman
0s equation, yielding grosdy incorred predictions
o ‘ and policies. Algorithms and conditions have
states been presented that guarantee a single, optimal

solution to the Bellman equation. It may be
important to take these into account when using reinforcement learning for prediction or
control.

Acknowledgments This research was supported under Task 231R1 by the United
States Air Force Office of Scientific Research.

References

Baird, L. C. (1996. Spurious Bellman-equation solutions. (Internal Tech Report)
Department of Computer Science, USAF Academy.

Baird, L. C. (1993. Advantage updating (DTIC Report AD WL-TR-93-1146 available
from the Defense Technicd Information Center, Cameron Station, Alexandria, VA
22304-6145)Wright-Patterson Air Force Base, OH.

Baird, L. C. (1995. Residual Algorithms: Reinforcement Learning with Function
Approximation. In Armand Prieditis & Stuart Rus<ll, eds. Madiine Leaning
Procealings of the Twelfth International Conference, 9-12 July, Morgan Kaufman
Publishers, San Francisco, CA.

Crites, R. H., and Barto, A. G. (1996. Improving elevator performance using
reinforcement leaning. To appea in Advances in Neural Information Processing
Systems 8, D. S.Touretzky, M. CMozer, M. E.Hasselmo, eds., MIT Press.

Harmon, M. E., and Baird, L. C. (1996. Multi-agent residual advantage learning with
general function approximation. (Internal Tech Report). Wright Laboratory, Wright-
Patterson Air Force Base, OH.

Tesauro, G. (1994. TD-Gammon, a self-teading badkgammon pogram, achieves
master-level playNeural Computation 6:215-219.

Watkins, C. J. C. H. (1989. Learning from delayed rewards. Doctoral thesis,
Cambridge University, Cambridge, England.

