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ABSTRACT

Interference in neural networks occurs when learning
in one area of the input space causes unlearning in an-
other area. These interference problems are especially
prevalent in on-line applications where learning is di-
rected by training data that is currently available rather
than some optimal presentation schedule of the training
data. We propose a procedure that enhances a learning
algorithm by giving it the ability to make the network
more local and hence, less likely to suffer from future
interference. Through simulations using Radial Basis
Function (RBF) networks and sigmoidal, multi-layer
perceptron (MLP) networks it is shown that by opti-
mizing a new cost function that penalizes non-locality,
the approximation error is reduced more quickly than
with standard back-propagation.
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1. INTRODUCTION

An issue that arises when using neural networks is the
learning problem, that is, how the network comes to suf-
ficiently approximate some desired function. Although
the learning process can become inefficient for various
reasons, we focus on situations that cause unlearning
of previously learned data. One such situation called
passive learning [3], which occurs when the training
samples cannot be preselected or reordered, often re-
sults in slower on-line learning because the incoming
training data is not randomly (optimally) distributed.
When using dynamical systems, the system state and
training samples can remain in a local region of the
state space, and hence, over a short period of time, will
be unrepresentative of the entire domain being learned.
These problems have been explored by Farrell [2] who
demonstrates that even if the desired function is learned
in a small region of the domain, which might result in
a state estimation error converging to zero, the func-
tion approximator fails to learn the desired function.
The longer the learning remains focused in a local re-
gion, the longer these weight changes accumulate, pos-
sibly causing other regions of the state space to unlearn.
This unlearning side effect, reffered to as wnterference,
occurs when learning in one area of the input space



causes unlearning in another area. Networks that are
less susceptible to interference are typically referred to
as spatially local networks [1].

Sofge and White [4] discuss characteristics of local net-
works and suggest that successful learning control of
process dynamics requires the use of local neural net-
work paradigms. A real-world problem, called Global
Network Collapse [4], illustrates what can happen when
using non-local networks. For example, consider a sta-
ble dynamical system after it settles into a desired tra-
jectory (which traces only a small portion of the input
space). In the absence of noise, a network function ap-
proximator that learns the system dynamics will stop
adapting, due to a reduction in the approximation er-
ror. In the presence of noise, however, the learning algo-
rithm remains active and continually adapts its weights
(because the error never goes to zero). This attempt at
learning the noise is not only unproductive locally, but
more importantly may cause the learned input/output
map in other areas of the state space (those areas not
on the trajectory) to gradually “collapse” due to inter-
ference.

Frequently, solutions to these interference problems are
sought by choosing local network architectures such
as Radial Basis Function (RBF) networks. Finding a
suitably-local network architecture, however, may be
challenging since the amount of locality required, which
may be affected by the shape of the basis functions or
the complexity of the desired function, is unknown. If
using an RBF, for example, one must decide how nar-
row the basis function widths should be to achieve suf-
ficient locality. Also, if the required degree of locality
is not uniform throughout the domain, prescribing a
network with uniformly fixed locality throughout the
domain, would not be acceptable. Another solution to
the interference problem is to choose a network capable
of becoming more local and an algorithm that adjusts
the network weights in such a way that local properties
emerge from the network during learning.

This paper introduces a procedure to transform an al-
gorithm that only attempts to reduce approximation er-
ror, into an algorithm that also increases the network’s
locality. The resultant localizing algorithm allows the
network to adapt on-line to the required degree of local-
ity rather than requiring it to be specified before hand.
Also, the localizing algorithm can be used to obtain a
non-uniform degree of locality throughout the domain,
allowing the network resources to focus on important
areas where interference is a problem, without wasting
resources by increasing locality over the entire domain.
It should be noted that the ultimate goal of optimizing
a network’s locality is to speed learning by reducing
unlearning.

To develop such a localizing algorithm we augment the
standard approximation error cost function with a term
that measures interference. The interference measure,
developed in [5], characterizes the effect learning at one
point in the domain has on another point. Reducing
interference will tend to make a network less likely to
suffer from future interference and hence make the net-
work more local. Interference and approximation error
are linearly combined to form a new cost function that
penalizes non-locality and poor approximation. Per-
forming gradient descent on this new cost function pro-
duces a localizing algorithm where each of the two ob-
Jjective functions i1s weighted more or less via a tuning
parameter. The usefulness of the localizing algorithm
is then illustrated using simulations.

The paper is organized as follows. In Section 2 we sum-
marize definitions of interference and localization found
in [5]. In Section 3, we develop the localizing algorithm
by adding an interference term to the standard approx-
imation error cost function. Section 4 provides simula-
tions that illustrate network locality and the localizing
algorithm’s utility. Some concluding remarks are pre-
sented in Section 5.

2. MEASURES OF INTERFERENCE
AND LOCALIZATION

In order to develop a localizing algorithm with the capa-
bility of making a network more immune to interference
we begin with rigorous measures of interference and lo-
calization developed in [5] that are summarized below.
Consider a network whose input/output map is f(z, 9),
where € X' is the input, # € © is the weight vector,
f X x0O — Ris asmooth map describing the network
topology, X C R” is the input domain, and ® C R™
is the weight domain. During supervised learning, the
objective is to adjust § such that the network approxi-
mates a desired function f*(z). We assume the learning
algorithm has the form

A0 = oH(z,0,¢) (1)

where « is a positive constant characterizing the step-
size and H(z,0,¢) is the direction for weight change,
which depends on the input z, weights 8, and the ap-
proximation error e = f(x,6) — f*(z).

Because the weight changes in a learning algorithm af-
fect the input/output map in various regions of the in-
put space, any definition of interference (which mea-
sures side effects of the learning process) should in-
corporate the learning algorithm within the defini-
tion. To do so, consider what happens during one
weight update. Given a training input/output sam-
ple (z, f*(x)), the current weight # is updated to a new
weight 6 + aH(z,0,¢). At the point z, where the net-



work is trained, the network map changes from f(x,6)
to f(x,0 +aH(z,0,¢)). During this weight update the
network I/O map is also affected at other points such as
z’' # x. We present a definition of interference followed
by a motivation behind its development.

Definition 1 Let f represent a network 1I/0O map with
weight vector @ which s updated according to a generic
learning algorithm A = oH(z,0,e). For random-
ized algorithms, aH(x, 0, ¢€) is the expected value of the
welght change. Then the interference at ' due to learn-
ing at x is defined as

I(x,2",0) =Z;u(z, ', 0) =
f&',0)—f(z' ,6+aH(z,6,1))

lim, ¢ F(,0)—f(z,0+aH(z,6,1))

if limit exists (2)
0

otherwise.

This definition provides a measure of the degree to
which training at an input point z influences the in-
put/output function of the network at another point
z’. Taking the limit of the ratio in (2) as « approaches
zero gives the sensitivity of one point to an infinitesimal
amount of training at another point, and normalizing e
to one allows us to compute interference without speci-
fying a desired function. The choice of e does not affect
limg—p in (2) for algorithms such as gradient descent
because e can be subsumed into «, which approaches
zero. If the limit does not exist, we define interference
to be zero because (the attempt at) learning at @ does
not affect the output at z’.

For any network function approximator, f, that has a
well defined gradient (with respect to #) everywhere in
X, applying L’Hospital’s rule to the ratio in (2) leads
to an equivalent yet simpler form of the interference
measure given by

I(x,2',0) =Z;mu(z, 2, 0) =
. Vef(z',8)H(z,6,1
limg 0 _Vegf((x,e))~H((x 1)

0

otherwise

where Vg f(z,0) is the gradient column vector of f(x, 6)
with respect to 6.

In the special case that the learning algorithm is gradi-
ent descent, equation (3) reduces to

Voi(e,6)Vei(z',8)

I(x,2',6) :{ NCETE if Vo f(z,0) £ 0

otherwise.

(4)

Equation (3) provides the underlying framework for
defining a measure of localization, which is done next.
Specifically, interference is defined as a function of two
points z, 2’ € X, while localization is defined over the
entire input domain X'. A definition for network local-
ization, given below, provides a measure of how immune
a network is to interference.

Definition 2 Let f represent a network 1/0O map with
weight vector @ which s updated according to a generic
learning algorithm A0 = oH(z,0,¢). For random-
ized algorithms, aH(x, 0, ¢) is the expected value of the
weight change. Then the localization of the network
over an inpult domain X is denoted by Ly () and is
defined as

Lx(8) £ 1/Zx(9) (5)

where Ty (0) 2 E[Z(z,2',0)?] and E[] is the expected
value over all x and x' chosen from some probability
density function (pdf) over the input domain X.

If the pdf of both z and z’ is uniformly distributed over
X, (5) becomes

1

Ly(0) = [/X/Xl(x,x/,ﬁ)zdxdx/ o (6)

In general, the localization measure Ly (6) can take any
positive real value. Large values of Ly (f) indicate the
network is more local over the domain X'. This defini-
tion transforms a measure of interference (between two
points in the input domain) into a measure of localiza-
tion (of a network over the entire input domain).

3. DEVELOPING A LOCALIZING AL-
GORITHM

The measure of interference introduced in the previous
section i1s used to develop a localizing algorithm de-
signed to reduce simultaneously both interference and
approximation error. In the standard learning problem
of minimizing the approximation error e = e(x,6) =
flz,0) — f*(x) for all #, a typical cost function is

ElJy(,0,¢€)] (7)

where the expectation operator is over all x € X and
Ji(x,0,e) = %e(aj,ﬁ)z. In order to perform gradient
descent on (7), an unbiased estimate of —aVyFE[Ji] is
given by the localizing algorithm

Ab(z,0,¢) = aH(z,0,¢) (8)
which is in the form given in (1) and

H(xz,0,e) = —eVof(x,0) (9)



specifies gradient descent.

For applications where interference is a problem we re-
duce the cost function E[Jz(xz, z', 2", 0, €)], where

1 1
Ja(z, 2" 2" 0,e) = 1/56(1‘, 9)2 +(1- 1/)51(1‘/, z, 9)2
(10)

and the expected value is taken over all z, 2,2 € X.
Reducing this cost function reduces the effects of inter-
ference as well the approximation error as determined
by the relative weighting of the two competing goals of
(10) using v € [0, 1]. Using (3) we define Z(z', 2", 6)
based upon learning algorithm (8)-(9). Throughout the
rest of this paper the variable # € X is the point at
which training actually occurs, ' € X’ represents a hy-
pothetical training point, and z” € X represents the
point at which one measures how much interference is
present, when learning at x’.

Taking the gradient of (10) produces an unbiased esti-
mate of the gradient of E[Js] giving a localizing algo-
rithm whose weight change is

Ab(z,z' 2" 0,¢e) = (11)
—aveVaf(z,0) + (1 —v)Z(z', 2", 0)VeZ(2', 2", 0)].

The interference function is given by

_ Veof(x",0) -Vef(z',0)
 Vef(2',0) Vef(x',0)

(12)

and its gradient is

VeZ(z' 2", 6) =
Vif(z',0) -Vef(x",0)+ Vif(z",0) Vof(z',0)
Veof(x',0) Vof(x',0)

-2

(Vof(z",0) -Vaof(z',0)(Vif(z',0) Vaf(z',0))

(Vo f(x',0) -Veof(x, 0))?

where V2 f(z’, ) is the Hessian matrix of f(z',6). Each
row of the matrix represents the gradient of each el-
ement of Vyf(2',0). Explicitly, the (¢,j) element of

Vif(z',0) is %a‘zlf(x’, ).

Next, we consider how each term in (11) affects the
learning process. To control the weighting between the
two goals that compete for the network’s resources, we
choose v from the range [0, 1]. When v = 1.0, (11)
reduces to the standard back-propagation on the mean
squared error (8) and hence does not attempt any lo-
calization of the network. In this case, if the training
points are randomly distributed and independent from
one another, learning may take place quickly. However,
if the training points are provided by a system trajec-
tory, for example, and are highly correlated with one
another, which happens frequently in passive learning

scenarios, interference may cause learning to be unac-
ceptably slow due to the unlearning problem. It is cases
like these that motivate us to use more local networks,
which we can obtain by choosing v to be less than one.
This invokes use of the localizing term in the cost func-
tion. Optimization of the locality measure requires z’
and z’/, which unlike z, are not constrained to be cho-
sen from a trajectory, since e does not appear in the
localizing term of (11). As a result, “learning to be lo-
cal” is not subject to the vagaries of passive learning
and hence the network can be expected to learn to be
local more quickly than it would otherwise. The main
objective is an algorithm which is able to self-organize
its localization properties such that leaning over the en-
tire domain of interest occurs faster. Once the network
becomes local, it can learn to approximate the function
with less interference side effects that may occur due
to a (possibly) poor distribution of the training data.
The use of the localizing algorithm is illustrated in the
following simulation section.

4. SIMULATIONS

Each simulation presented here 1s designed to help the
reader better understand the localizing algorithm and
local networks by comparing the localizing algorithm
(11) and the original learning algorithm (8). The fol-
lowing example illustrates how interference and net-
work locality are related in an RBF network.

Example 1 Consider the problem of learning a train-
ing set of two input/output pairs at » and s shown in
Figure 1. We use a two-node Radial Basis Function
(RBF) network given as

f(z,0) = Z:aie_((x_c’)b’)2 (13)

i=1

where the six weights a;, b;, and ¢;, i = {1, 2} compose
f. For Figures 1-3, the points represent the training
data, the two dashed curves are the two weighted basis
functions found at the output of the two nodes in the
hidden layer. Their sum is the approximation rendered
by the network, f(x,6), indicated by the solid curve.
Figure 1 shows the results after randomly initializing
the six weights between —1.0 and 1.0, from a uniform
distribution. Figure 2(a) shows results after training
with standard back-propagation on the two training
points. One can see that the network (solid curve) does
indeed learn the two points, that is, | f*(r)— f(r, 6)| and
|f*(s) — f(s,6)] are minimized. Figure 2(b) shows the
results after training with the localizing algorithm, with
v = 0.5. The two approximation errors are minimized,
as well as |Z(r,s,0)| and |Z(s,r,@)|. Figure 2(b) illus-
trates how minimizing these four quantities affects the
solution obtained by the localizing algorithm. Each ba-



sis of the RBF contributes significantly to the approx-
imation at both points showing that a local network
can be distributed. This network 1s still considered
local, because training at either point does not cause
unlearning at the other point.

Figure 3 shows the results of an additional phase of
learning where the network is retrained at a new desired
point at & = r using the standard back-propagation al-
gorithm. Figure 3(a) corresponds to retraining of the
network weights from Figure 2(a), while Figure 3(b)
corresponds to retraining the network weights of Fig-
ure 2(b). This training phase helps demonstrate the dif-
ferent levels of interference between z’ = r and ="/ = s
in the two graphs of Figure 2. The results show the
effect a localized network, shown in Figure 2(b), has on
subsequent training in comparison to a network that is
not local, as shown in Figure 2(a). In each phase of
learning the learning rate is 0.1 and training is stopped
when all terms being minimized are less than .0001. o

Next, we provide a more complex example which sim-
ulates passive learning of a continuous function by
causing the input to move slowly throughout its do-
main while performing on-line training. Again we com-
pare standard back-propagation with the localizing al-
gorithm. As the velocity with which the input moves
throughout i1ts domain, slows, learning with standard
back-propagation also slows due to interference.

Example 2 Consider the problem of learning
f* (&) = sin(2mx) (14)

in the domain X = [0, 1] using a single-input, single-
output, two-hidden-layer multi-layer perceptron (MLP)
network with 10 nodes in each of the two hidden layers
and a bias combined into the input layer and each of
the two hidden layers. Each of the network’s 141 ad-
Jjustable weights is initialized randomly from a uniform
probability distribution in [—2, 2].

To simulate the passive learning scenario our training

data is obtained from sampling the sinusoid found in

14). On the i*" timestep of learning, we chose the
P g

input as

z; = (1 4 sin(274/160))/2. (15)

The pattern generated by the training points repeats
every 160 timesteps. Learning in this environment is
considerably more difficult as compared to the case of
random inputs. For example learning to within an ap-
proximation error of 0.2 takes 165,000 timesteps as op-
posed to 2,500 timesteps when the values of & are cho-
sen randomly from the domain X' = [0, 1]. Figure 4(a)
plots the £1 norm of the approximation error, given as
fX le(x, 8)|dx, versus timestep which reaches a thresh-
old of 0.2 considerably more quickly when v = 0.97

(solid curve) than when v = 1.0 (dashed curve). In
Figure 4(b) we see the £1 norm of interference, given
as [y [y |1Z(2',2",0)|de'dx", is reduced quickly when
v = 0.97 (solid curve) and seems instrumental in help-
ing to reduce the approximation error. It is interesting
to note that when v = 1.0, the degree of network in-
terference is reduced (dashed curve) even though such
a reduction is not directly sought since v = 1.0. Also
this reduction coincides temporally with the reduction
in approximation error. This shows how adding an in-
centive to be local during training reduces the approx-
imation error faster despite the extra burden on the
network’s “degrees of freedom” due to additional term
to the cost function. o

5. CONCLUSION

Moving directly towards a goal 1s sometimes not as ef-
ficient as expending the energy to circumvent an obsta-
cle. This paper illustrates a method for circumventing
interference, which is accentuated during passive learn-
ing scenarios, by borrowing from a network’s approxi-
mation power (by adding a competing goal in the stan-
dard quadratic cost function). Local properties emerge
from the network, in a self-organized manner, during
optimization of this new cost function. This procedure
mollifies the detrimental interference effects allowing
the network to avoid unlearning, ultimately causing the
overall approximation error to be reduced more quickly.
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Figure 1: Initial network approximation, denoted by the solid curve, which is the sum of the two weighted hidden node
outputs denoted by the dashed curves.
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Figure 2: Network approximation after training, (a) with standard back-propagation, and (b) the localizing algorithm with
v =0.5.
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Figure 3: Network approximation after retraining exclusively on a single point at » = r with standard back-propagation,
starting with weights obtained from (a) Figure 2(a) and (b) Figure 2(b).
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Figure 4: £; norm of the approximation error (over the entire domain) is shown in (a), £1 norm of interference (over the
entire domain) is shown in (b) with v = 0.97 (solid curve, supervised learning plus localization) and v = 1.0
(dashed curve, pure supervised learning, no localization).



