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1. INTRODUCTIONAn issue that arises when using neural networks is thelearning problem, that is, how the network comes to suf-�ciently approximate some desired function. Althoughthe learning process can become ine�cient for variousreasons, we focus on situations that cause unlearningof previously learned data. One such situation calledpassive learning [3], which occurs when the trainingsamples cannot be preselected or reordered, often re-sults in slower on-line learning because the incomingtraining data is not randomly (optimally) distributed.When using dynamical systems, the system state andtraining samples can remain in a local region of thestate space, and hence, over a short period of time, willbe unrepresentative of the entire domain being learned.These problems have been explored by Farrell [2] whodemonstrates that even if the desired function is learnedin a small region of the domain, which might result ina state estimation error converging to zero, the func-tion approximator fails to learn the desired function.The longer the learning remains focused in a local re-gion, the longer these weight changes accumulate, pos-sibly causing other regions of the state space to unlearn.This unlearning side e�ect, re�ered to as interference,occurs when learning in one area of the input space



causes unlearning in another area. Networks that areless susceptible to interference are typically referred toas spatially local networks [1].Sofge and White [4] discuss characteristics of local net-works and suggest that successful learning control ofprocess dynamics requires the use of local neural net-work paradigms. A real-world problem, called GlobalNetwork Collapse [4], illustrates what can happen whenusing non-local networks. For example, consider a sta-ble dynamical system after it settles into a desired tra-jectory (which traces only a small portion of the inputspace). In the absence of noise, a network function ap-proximator that learns the system dynamics will stopadapting, due to a reduction in the approximation er-ror. In the presence of noise, however, the learning algo-rithm remains active and continually adapts its weights(because the error never goes to zero). This attempt atlearning the noise is not only unproductive locally, butmore importantly may cause the learned input/outputmap in other areas of the state space (those areas noton the trajectory) to gradually \collapse" due to inter-ference.Frequently, solutions to these interference problems aresought by choosing local network architectures suchas Radial Basis Function (RBF) networks. Finding asuitably-local network architecture, however, may bechallenging since the amount of locality required, whichmay be a�ected by the shape of the basis functions orthe complexity of the desired function, is unknown. Ifusing an RBF, for example, one must decide how nar-row the basis function widths should be to achieve suf-�cient locality. Also, if the required degree of localityis not uniform throughout the domain, prescribing anetwork with uniformly �xed locality throughout thedomain, would not be acceptable. Another solution tothe interference problem is to choose a network capableof becoming more local and an algorithm that adjuststhe network weights in such a way that local propertiesemerge from the network during learning.This paper introduces a procedure to transform an al-gorithm that only attempts to reduce approximation er-ror, into an algorithm that also increases the network'slocality. The resultant localizing algorithm allows thenetwork to adapt on-line to the required degree of local-ity rather than requiring it to be speci�ed before hand.Also, the localizing algorithm can be used to obtain anon-uniform degree of locality throughout the domain,allowing the network resources to focus on importantareas where interference is a problem, without wastingresources by increasing locality over the entire domain.It should be noted that the ultimate goal of optimizinga network's locality is to speed learning by reducingunlearning.

To develop such a localizing algorithm we augment thestandard approximation error cost function with a termthat measures interference. The interference measure,developed in [5], characterizes the e�ect learning at onepoint in the domain has on another point. Reducinginterference will tend to make a network less likely tosu�er from future interference and hence make the net-work more local. Interference and approximation errorare linearly combined to form a new cost function thatpenalizes non-locality and poor approximation. Per-forming gradient descent on this new cost function pro-duces a localizing algorithm where each of the two ob-jective functions is weighted more or less via a tuningparameter. The usefulness of the localizing algorithmis then illustrated using simulations.The paper is organized as follows. In Section 2 we sum-marize de�nitions of interference and localization foundin [5]. In Section 3, we develop the localizing algorithmby adding an interference term to the standard approx-imation error cost function. Section 4 provides simula-tions that illustrate network locality and the localizingalgorithm's utility. Some concluding remarks are pre-sented in Section 5.2. MEASURES OF INTERFERENCEAND LOCALIZATIONIn order to develop a localizing algorithmwith the capa-bility of making a network more immune to interferencewe begin with rigorous measures of interference and lo-calization developed in [5] that are summarized below.Consider a network whose input/output map is f(x; �),where x 2 X is the input, � 2 � is the weight vector,f : X �� 7! R is a smooth map describing the networktopology, X � Rr is the input domain, and � � Rmis the weight domain. During supervised learning, theobjective is to adjust � such that the network approxi-mates a desired function f�(x). We assume the learningalgorithm has the form�� = �H(x; �; e) (1)where � is a positive constant characterizing the step-size and H(x; �; e) is the direction for weight change,which depends on the input x, weights �, and the ap-proximation error e = f(x; �) � f�(x).Because the weight changes in a learning algorithm af-fect the input/output map in various regions of the in-put space, any de�nition of interference (which mea-sures side e�ects of the learning process) should in-corporate the learning algorithm within the de�ni-tion. To do so, consider what happens during oneweight update. Given a training input/output sam-ple (x; f�(x)), the current weight � is updated to a newweight � + �H(x; �; e). At the point x, where the net-



work is trained, the network map changes from f(x; �)to f(x; �+�H(x; �; e)). During this weight update thenetwork I/O map is also a�ected at other points such asx0 6= x. We present a de�nition of interference followedby a motivation behind its development.De�nition 1 Let f represent a network I/O map withweight vector � which is updated according to a genericlearning algorithm �� = �H(x; �; e). For random-ized algorithms, �H(x; �; e) is the expected value of theweight change. Then the interference at x0 due to learn-ing at x is de�ned asI(x; x0; �) = If;H(x; x0; �) 4=8>><>>: lim�!0 f(x0;�)�f(x0;�+�H(x;�;1))f(x;�)�f(x;�+�H(x;�;1))if limit exists0 otherwise. (2)This de�nition provides a measure of the degree towhich training at an input point x in
uences the in-put/output function of the network at another pointx0. Taking the limit of the ratio in (2) as � approacheszero gives the sensitivity of one point to an in�nitesimalamount of training at another point, and normalizing eto one allows us to compute interference without speci-fying a desired function. The choice of e does not a�ectlim�!0 in (2) for algorithms such as gradient descentbecause e can be subsumed into �, which approacheszero. If the limit does not exist, we de�ne interferenceto be zero because (the attempt at) learning at x doesnot a�ect the output at x0.For any network function approximator, f , that has awell de�ned gradient (with respect to �) everywhere inX , applying L'Hospital's rule to the ratio in (2) leadsto an equivalent yet simpler form of the interferencemeasure given byI(x; x0; �) = If;H(x; x0; �) 4=8>><>>: lim�!0 r�f(x0;�)�H(x;�;1)r�f(x;�)�H(x;�;1)if r�f(x; �) �H(x; �; 1) 6= 00 otherwise (3)where r�f(x; �) is the gradient column vector of f(x; �)with respect to �.In the special case that the learning algorithm is gradi-ent descent, equation (3) reduces toI(x; x0; �) = ( r�f(x;�)�r�f(x0 ;�)kr�f(x;�)k22 if r�f(x; �) 6= 00 otherwise. (4)

Equation (3) provides the underlying framework forde�ning a measure of localization, which is done next.Speci�cally, interference is de�ned as a function of twopoints x; x0 2 X , while localization is de�ned over theentire input domain X . A de�nition for network local-ization, given below, provides a measure of how immunea network is to interference.De�nition 2 Let f represent a network I/O map withweight vector � which is updated according to a genericlearning algorithm �� = �H(x; �; e). For random-ized algorithms, �H(x; �; e) is the expected value of theweight change. Then the localization of the networkover an input domain X is denoted by LX (�) and isde�ned as LX (�) 4= 1=�IX (�) (5)where �IX (�) 4= E[I(x; x0; �)2] and E[�] is the expectedvalue over all x and x0 chosen from some probabilitydensity function (pdf) over the input domain X .If the pdf of both x and x0 is uniformly distributed overX , (5) becomesLX (�) = �ZXZX I(x; x0; �)2dxdx0��1 : (6)In general, the localization measure LX (�) can take anypositive real value. Large values of LX (�) indicate thenetwork is more local over the domain X . This de�ni-tion transforms a measure of interference (between twopoints in the input domain) into a measure of localiza-tion (of a network over the entire input domain).3. DEVELOPING A LOCALIZING AL-GORITHMThe measure of interference introduced in the previoussection is used to develop a localizing algorithm de-signed to reduce simultaneously both interference andapproximation error. In the standard learning problemof minimizing the approximation error e = e(x; �) =f(x; �) � f�(x) for all x, a typical cost function isE[J1(x; �; e)] (7)where the expectation operator is over all x 2 X andJ1(x; �; e) = 12e(x; �)2. In order to perform gradientdescent on (7), an unbiased estimate of ��r�E[J1] isgiven by the localizing algorithm��(x; �; e) = �H(x; �; e) (8)which is in the form given in (1) andH(x; �; e) = �er�f(x; �) (9)



speci�es gradient descent.For applications where interference is a problem we re-duce the cost function E[J2(x; x0; x00; �; e)], whereJ2(x; x0; x00; �; e) = � 12e(x; �)2 + (1� �)12I(x0; x00; �)2(10)and the expected value is taken over all x; x0; x00 2 X .Reducing this cost function reduces the e�ects of inter-ference as well the approximation error as determinedby the relative weighting of the two competing goals of(10) using � 2 [0; 1]. Using (3) we de�ne I(x0; x00; �)based upon learning algorithm (8)-(9). Throughout therest of this paper the variable x 2 X is the point atwhich training actually occurs, x0 2 X represents a hy-pothetical training point, and x00 2 X represents thepoint at which one measures how much interference ispresent when learning at x0.Taking the gradient of (10) produces an unbiased esti-mate of the gradient of E[J2] giving a localizing algo-rithm whose weight change is��(x; x0; x00; �; e) = (11)�� [�er�f(x; �) + (1� �)I(x0; x00; �)r�I(x0; x00; �)] :The interference function is given byI(x0; x00; �) = r�f(x00; �) � r�f(x0; �)r�f(x0; �) � r�f(x0; �) (12)and its gradient isr�I(x0; x00; �) =r2�f(x0; �) � r�f(x00; �) +r2�f(x00; �) � r�f(x0; �)r�f(x0; �) � r�f(x0; �)� 2(r�f(x00; �) � r�f(x0; �))(r2�f(x0; �) � r�f(x0; �))(r�f(x0; �) � r�f(x0; �))2wherer2�f(x0; �) is the Hessian matrix of f(x0; �). Eachrow of the matrix represents the gradient of each el-ement of r�f(x0; �). Explicitly, the (i; j) element ofr2�f(x0; �) is @@�j @@�i f(x0; �).Next, we consider how each term in (11) a�ects thelearning process. To control the weighting between thetwo goals that compete for the network's resources, wechoose � from the range [0, 1]. When � = 1:0, (11)reduces to the standard back-propagation on the meansquared error (8) and hence does not attempt any lo-calization of the network. In this case, if the trainingpoints are randomly distributed and independent fromone another, learning may take place quickly. However,if the training points are provided by a system trajec-tory, for example, and are highly correlated with oneanother, which happens frequently in passive learning

scenarios, interference may cause learning to be unac-ceptably slow due to the unlearning problem. It is caseslike these that motivate us to use more local networks,which we can obtain by choosing � to be less than one.This invokes use of the localizing term in the cost func-tion. Optimization of the locality measure requires x0and x00, which unlike x, are not constrained to be cho-sen from a trajectory, since e does not appear in thelocalizing term of (11). As a result, \learning to be lo-cal" is not subject to the vagaries of passive learningand hence the network can be expected to learn to belocal more quickly than it would otherwise. The mainobjective is an algorithm which is able to self-organizeits localization properties such that leaning over the en-tire domain of interest occurs faster. Once the networkbecomes local, it can learn to approximate the functionwith less interference side e�ects that may occur dueto a (possibly) poor distribution of the training data.The use of the localizing algorithm is illustrated in thefollowing simulation section.4. SIMULATIONSEach simulation presented here is designed to help thereader better understand the localizing algorithm andlocal networks by comparing the localizing algorithm(11) and the original learning algorithm (8). The fol-lowing example illustrates how interference and net-work locality are related in an RBF network.Example 1 Consider the problem of learning a train-ing set of two input/output pairs at r and s shown inFigure 1. We use a two-node Radial Basis Function(RBF) network given asf(x; �) = 2Xi=1 aie�((x�ci)bi)2 (13)where the six weights ai, bi, and ci, i = f1; 2g compose�. For Figures 1-3, the points represent the trainingdata, the two dashed curves are the two weighted basisfunctions found at the output of the two nodes in thehidden layer. Their sum is the approximation renderedby the network, f(x; �), indicated by the solid curve.Figure 1 shows the results after randomly initializingthe six weights between �1:0 and 1:0, from a uniformdistribution. Figure 2(a) shows results after trainingwith standard back-propagation on the two trainingpoints. One can see that the network (solid curve) doesindeed learn the two points, that is, jf�(r)�f(r; �)j andjf�(s) � f(s; �)j are minimized. Figure 2(b) shows theresults after training with the localizing algorithm,with� = 0:5. The two approximation errors are minimized,as well as jI(r; s; �)j and jI(s; r; �)j. Figure 2(b) illus-trates how minimizing these four quantities a�ects thesolution obtained by the localizing algorithm. Each ba-



sis of the RBF contributes signi�cantly to the approx-imation at both points showing that a local networkcan be distributed. This network is still consideredlocal, because training at either point does not causeunlearning at the other point.Figure 3 shows the results of an additional phase oflearning where the network is retrained at a new desiredpoint at x = r using the standard back-propagation al-gorithm. Figure 3(a) corresponds to retraining of thenetwork weights from Figure 2(a), while Figure 3(b)corresponds to retraining the network weights of Fig-ure 2(b). This training phase helps demonstrate the dif-ferent levels of interference between x0 = r and x00 = sin the two graphs of Figure 2. The results show thee�ect a localized network, shown in Figure 2(b), has onsubsequent training in comparison to a network that isnot local, as shown in Figure 2(a). In each phase oflearning the learning rate is 0:1 and training is stoppedwhen all terms being minimized are less than .0001. �Next, we provide a more complex example which sim-ulates passive learning of a continuous function bycausing the input to move slowly throughout its do-main while performing on-line training. Again we com-pare standard back-propagation with the localizing al-gorithm. As the velocity with which the input movesthroughout its domain, slows, learning with standardback-propagation also slows due to interference.Example 2 Consider the problem of learningf�(x) = sin(2�x) (14)in the domain X = [0; 1] using a single-input, single-output, two-hidden-layer multi-layer perceptron (MLP)network with 10 nodes in each of the two hidden layersand a bias combined into the input layer and each ofthe two hidden layers. Each of the network's 141 ad-justable weights is initialized randomly from a uniformprobability distribution in [�2; 2].To simulate the passive learning scenario our trainingdata is obtained from sampling the sinusoid found in(14). On the ith timestep of learning, we chose theinput as xi = (1 + sin(2�i=160))=2: (15)The pattern generated by the training points repeatsevery 160 timesteps. Learning in this environment isconsiderably more di�cult as compared to the case ofrandom inputs. For example learning to within an ap-proximation error of 0.2 takes 165,000 timesteps as op-posed to 2,500 timesteps when the values of x are cho-sen randomly from the domain X = [0; 1]. Figure 4(a)plots the L1 norm of the approximation error, given asRX je(x; �)jdx, versus timestep which reaches a thresh-old of 0.2 considerably more quickly when � = 0:97

(solid curve) than when � = 1:0 (dashed curve). InFigure 4(b) we see the L1 norm of interference, givenas RX RX jI(x0; x00; �)jdx0dx00, is reduced quickly when� = 0:97 (solid curve) and seems instrumental in help-ing to reduce the approximation error. It is interestingto note that when � = 1:0, the degree of network in-terference is reduced (dashed curve) even though sucha reduction is not directly sought since � = 1:0. Alsothis reduction coincides temporally with the reductionin approximation error. This shows how adding an in-centive to be local during training reduces the approx-imation error faster despite the extra burden on thenetwork's \degrees of freedom" due to additional termto the cost function. �5. CONCLUSIONMoving directly towards a goal is sometimes not as ef-�cient as expending the energy to circumvent an obsta-cle. This paper illustrates a method for circumventinginterference, which is accentuated during passive learn-ing scenarios, by borrowing from a network's approxi-mation power (by adding a competing goal in the stan-dard quadratic cost function). Local properties emergefrom the network, in a self-organized manner, duringoptimization of this new cost function. This proceduremolli�es the detrimental interference e�ects allowingthe network to avoid unlearning, ultimately causing theoverall approximation error to be reduced more quickly.6. REFERENCES[1] W. Baker and J. Farrell. An introduction toconnectionist learning control systems. In D. Whiteand D. Sofge, editors, Handbook of Intelligent ControlNeural, Fuzzy, and Adaptive Approaches, pages 35{63,New York, NY, 1992. Van Nostrand Reinhold.[2] J. Farrell. Approximators characteristics andtheir e�ect on training misbehavior in passive learningcontrol. In Proceedings of the 1996 IEEE InternationalSymposium on Intelligent Control, pages 181{187, 1996.[3] J. Farrell and T. Berger. On the e�ects of thetraining sample density in passive learning control. InProceedings of the American Control Conference, pages872{876, 1995.[4] D. Sofge and D.White. Applied learning: optimalcontrol for manufacturing. In D. White and D. Sofge,editors, Handbook of Intelligent Control Neural, Fuzzy,and Adaptive Approaches, pages 259{281, New York,NY, 1992. Van Nostrand Reinhold.[5] S. Weaver, L. Baird, and M. Polycarpou. An ana-lytical framework for local feedforward networks. IEEETrans. on Neural Net., 9(3):473{482, 1998.
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bFigure 2: Network approximation after training, (a) with standard back-propagation, and (b) the localizing algorithm with� = 0:5.
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bFigure 3: Network approximation after retraining exclusively on a single point at x = r with standard back-propagation,starting with weights obtained from (a) Figure 2(a) and (b) Figure 2(b).
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Figure 4: L1 norm of the approximation error (over the entire domain) is shown in (a), L1 norm of interference (over theentire domain) is shown in (b) with � = 0:97 (solid curve, supervised learning plus localization) and � = 1:0(dashed curve, pure supervised learning, no localization).


