
1

AN ALGORITHM FOR DETERMINING ISOMORPHISM USING

LEXICOGRAPHIC SORTING AND THE MATRIX INVERSE

Christopher J. Augeri
1
, Barry E. Mullins

1
, Leemon C. Baird III

3
,

Dursun A. Bulutoglu
2
, and Rusty O. Baldwin

1

1
Department of Electrical and Computer Engineering

2
Department of Mathematics and Statistics

Air Force Institute of Technology

Wright Patterson Air Force Base, Dayton, Ohio, 45433

{chris.augeri, barry.mullins, dursun.bulutoglu, rusty.baldwin}@afit.edu

3
Department of Computer Science

United States Air Force Academy

United States Air Force Academy, Colorado Springs, Colorado, 80840

leemon.baird@usafa.edu

Abstract

The PageRank algorithm perturbs the adjacency matrix defined by a set

of web pages and hyperlinks such that the resulting matrix is positive

and row-stochastic. Applying the Perron-Frobenius theorem establishes

that the eigenvector associated with the dominant eigenvalue exists and

is unique. For some graphs, the PageRank algorithm may yield a

canonical isomorph. We propose a ranking method based on the matrix

inverse. Since the inverse may not exist, we apply two isomorphism-

preserving perturbations, based on the signless Laplacian, to ensure that

the resulting matrix is diagonally dominant. By applying the Gershgorin

Circle theorem, we know this matrix must have an inverse, namely, a

set of vectors unique up to isomorphism. We concatenate sorted rows of

the inverse with its unsorted rows, lexicographically sort on the

concatenated matrix, and apply the ranking as an induced permutation

on the input adjacency matrix. This preliminary report shows IsoRank

identifies most random graphs and always terminates in polynomial

time, illustrated by the execution run times for a small set of graphs.

IsoRank has been applied to dense graphs of as many as 4,000 vertices.

Keywords: graph isomorphism, lexicographic sorting, inverse, PageRank

This research is supported in part by the Air Force Communications Agency (AFCA). The views

expressed in this paper are those of the authors and do not reflect the official policy or position

of the United States Air Force (USAF), Department of Defense (DoD), or the U.S. Government.

2

1 Introduction

1.1 Motivation
In our work, we study weighted graphs derived by computing the pair-wise

distances of n vertices distributed in k-dimensional (k-D) space. For instance, if

the 3-D geographic coordinates of an unmanned aerial vehicle (UAV) swarm are

given as input, these coordinates would be mapped a 2-D distance matrix, i.e., a

weighted graph, by an arbitrary distance metric, such as their Euclidean distance.

The algorithm we describe herein accepts weighted graphs (distance matrices);

however to simplify our discussion, we assume the resulting 2-D distance matrix

is a symmetric { }0,1 matrix whose main diagonal is everywhere zero, i.e., it is

the adjacency matrix, A, representing a simple and connected graph, G.

Our first objective is to rank the n vertices (UAVs) relative to their importance

within the 2-D distance matrix; ideally, this ordering should also be canonical.

Since canonically ranking a graph’s vertices is equivalent to the difficult problem

of determining graph isomorphism, we initially restricted ourselves to finding an

ordering that addressed our fundamental objective, ordering vertices with respect

to their relative importance. We began by considering spectral algorithms, i.e.,

those based on the eigen decomposition, as they have been similarly useful when

drawing graphs [14] and ranking web pages for search engines [19].

We observed that the PageRank algorithm [19] yields canonical isomorphs for

many random graphs. The PageRank algorithm perturbs an input matrix, A, such

that the resulting matrix, ,′A is strictly positive and row-stochastic. By applying

the Perron-Frobenius theorem, we know that the eigenvector associated with the

leading eigenvalue of such a matrix exists and is unique [22]. PageRank orders

vertices on this eigenvector’s entries; since an entry may occur multiple times,

PageRank does not typically yield a canonical isomorph for an arbitrary graph.

Further work revealed that iteratively applying the PageRank algorithm yields

a canonical isomorph more often, where iteration is logarithmic with respect to

the number of vertices. We then investigated if sorting lexicographically on an

information matrix, X, e.g., on all eigenvectors, versus on a single vector, further

improved performance. We concluded X must be unique up to isomorphism, i.e.,

X must satisfy
1 1

,
− −⋅ ⋅ ↔ ⋅ ⋅P A P P X P where P is a permutation matrix and 1−P

denotes the matrix inverse. One such matrix satisfying this expression, i.e., a

matrix that is unique up to isomorphism, is
1
,

−=X A the matrix inverse of A.

Since 1−A may not exist, we apply two isomorphism-preserving perturbations

and thus obtain a strictly diagonally dominant matrix, .′A The Gershgorin circle

theorem can be used to prove a diagonally dominant matrix is positive definite,

i.e., that () 1−′A exists [24]. By suitably constructing X from () 1
,

−′A ordering a

graph’s vertices based on iterative lexicographic sorting of X yields a canonical

isomorph in polynomial time for many graphs, including certain regular graphs.

3

2 Background

2.1 Deciding Isomorphism
An oft-cited application for an algorithms that decides graph isomorphism is the

comparison of two chemicals, i.e., identifying isomers [8][23]. Other uses are

locating electrical circuits within larger circuits [18], merging attack trees [17],

data mining [11], and validating deployed sensor networks, e.g., by a UAV [5].

The plethora of research in deciding graph isomorphism has been of such extent

a classic survey paper is aptly titled “The Graph Isomorphism Disease” [21].

An algorithm for deciding graph isomorphism accepts arbitrary graphs; an

algorithm for determining graph isomorphism fails in one or more instances.

Thus, the algorithm described herein, IsoRank, determines isomorphism, e.g., it

has difficulty with strongly regular graphs. The key contribution is the simplicity

and novelty of the approach, along with the promising, albeit preliminary results.

In particular, IsoRank yields canonical isomorphs more often than PageRank, the

algorithm we derived it from, and like PageRank, terminates in polynomial time.

2.1.1 Deciding Graph Isomorphism

Two graphs,
1

G and
2
,G are mutual isomorphs, denoted

1 2
,G G≅ if their edge

sets define equivalent relationships on their vertices. Formally,
1 2

G G≅ if and

only if a permutation, ,φ satisfying (1) exists. For each edge, { } 1
, ,

i a b
e v v E= ∈

an equivalent edge, ,
j

e exists in
2
,E where

1
,

a b
v v V∈ and () (){ }, .j a be v vφ φ=

 ()
{ }

() (){ }

1 2

1 2

1 1

2

s.t.

, , ,

,

i a b a b

j a b

G G

V V

e v v E v v V

e v v E

φ

φ φ

≅

∃ =

∀ = ∈ ∧ ∈

∃ = ∈

վ

 (1)

For instance, permuting the “house” graph [10] shown in Figure 1(a) by the

permutation [], , , ,a e b b c a d c e dφ = → → → → → yields the isomorph shown

in Figure 1(b). The difficulty is in finding a suitable φ; thus far, the problem of

deciding isomorphism remains in NP and is not yet known to be in P.

d

a c

b

e

e

c d

b

a

(a)
1
,G random isomorph (b)

2
,G another isomorph

Figure 1. Isomorphs of the “houseg Graph

4

2.1.2 Deciding Matrix Isomorphism

Given the adjacency matrices,
1

A and
2
,A of graphs,

1
G and

2
,G we similarly

can decide whether
1 2

.≅A A Formally,
1 2

≅A A if and only if there exists a

permutation matrix, P, satisfying (2), where P is obtained by permuting the

columns (rows) of the identity matrix,
,

,
n n

I via a permutation, ,1,nφ and .n V=

 1

1 2 2 1 1
s.t. T −≅ ↔ ∃ = ⋅ ⋅ = ⋅ ⋅A A P A P A P P A P (2)

The graphs shown in Figure 1 yield the adjacency matrices of Tables 1(a) and

1(b). We satisfy (2) by mapping []5, 2,1,3, 4φ = to a permutation matrix,

,

,:

n n

φ=P I , as shown in Table 1(c). By comparing all !n permutations of
1

A with

2
,A we can equivalently decide matrix isomorphism, i.e., graph isomorphism.

Table 1. Isomorphic adjacency matrices of the house graph

 a b c d e

a 0 1 1 0 0

b 1 0 0 1 1

c 1 0 0 1 0

d 0 1 1 0 1

e 0 1 0 1 0

 a b c d e

a 0 1 0 0 1

b 1 0 1 0 1

c 0 1 0 1 0

d 0 0 1 0 1

e 1 1 0 1 0

 5 2 1 3 4

5 0 0 0 0 1

2 0 1 0 0 0

1 1 0 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0
(a)

1
A (b)

2
A (c) P

2.1.3 Canonical Isomorphs

An approach used in many algorithms for deciding isomorphism is to compute a

canonical isomorph, ,ωA where if [] []1 2
,ω ω=A A then

1 2
≅A A . For instance,

the minimum canonical isomorph (MCI) is the isomorph that yields the smallest

number, ()num ,A if we concatenate consecutive columns of A’s upper triangle,

i.e., () ()()MCI min num , !.i i n= ≤A A Thus, with respect to Table 1, we have that

()1 2
num 1100011101=A and that ()2 2

num 1001101101 .=A The MCI of the

house graph is shown in Table 2, where () 2
num 0011101101 ,ω =A obtained by

lexicographically sorting all !n isomorphs of A. To further reinforce this idea,

we note the lexicographic MCI of “logarithm” and “algorithm” is “aghilmort”.

Table 2. Minimum canonical isomorph (MCI) of the house graph

 v1 v2 v3 v4 v5

v1 0 0 0 1 1

v2 0 0 1 0 1

v3 0 1 0 1 0

v4 1 0 1 0 1

v5 1 1 0 1 0

5

2.1.4 Invariants

An invariant,
�

, is a necessary, but insufficient, condition for two graphs to be

isomorphic, i.e.,
1 2

ψ ψ= if
1 2

.≅A A It is generally useful to compare a set of

invariants of increasing complexity prior to executing a more complex algorithm

for computing their canonical isomorphs. A common set of invariants is given in

Figure 2, where we assume the lower bound on computing ωA is ()3
logn nΩ ⋅

and that all matrices are stored in a dense, i.e., non-sparse, format.

()
()

()
()

()

1 1 2 2

1

2

2

2

3

3

4

 _ is_invars_match , , ,

// : compare number of vertices, 1

// : compare number of edges,

// : compare sorted degree sequence, log

// : compare eigenvalues,

is match n n

n

n n

n

ψ

ψ

ψ

ψ

=

Θ

Θ

Θ ⋅

Θ

function A A

end

Figure 2. Comparing graph invariants

2.1.5 A Template Method for Deciding Isomorphism

Invariants and canonical isomorphs provide the machinery to define a template

for deciding isomorphism, shown in Figure 3. The difficulty lies in efficiently

finding a canonical isomorph. An oft-cited algorithm of choice is nauty [16],

which computes the MCI of a reduced set of permutations that is obtained via

pruning based on discovered automorphisms. A variant of this template approach

is to directly match two graphs versus finding a canonical isomorph [4].

()

()
()

[] ()
[] ()

1 1 2 2

1 1 2 2

1 1 1

2 2 2

 is_iso , , ,

// compare invariants

is_invars_match , , ,

// compute & compare canonical isomorphs

find_iso_canon ,

find_iso_canon ,

isIso n n

isInvarsMatch n n

isInvarsMatch

n

n

ω

ω

=

=

=

=

function A A

A A

if

A A

A A

if A[] []()1 2 true

false

ω ω
= A return end

end

return

end

Figure 3. Deciding isomorphism with canonical isomorphs

6

2.2 The PageRank Algorithm
Our work is motivated by the PageRank algorithm [19], which orders vertices on

the dominant eigenvector of a perturbed adjacency matrix that is forced to be

positive and stochastic. By the Perron-Frobenius theorem [22], such a matrix has

a unique eigenvector that is associated with its largest eigenvalue [1].

Furthermore, it also corresponds to the stationary distribution if the matrix is also

a positive single stochastic matrix [22], where a single stochastic matrix is a

matrix whose rows (columns) sum to one, i.e., ,: 1, .ii
i= ∀∑ A The PageRank

algorithm applies an isomorphism-preserving perturbation, shown in Figure 4,

to the input matrix such that the resulting matrix is a positive single stochastic

matrix, where 0,1α ∈   scales the non-zero entries and ()1 nδ α= − is the

assumed probability a surfer randomly selects an arbitrary page. The matrix, D,

is the vertex degree defined previously, i.e., each diagonal entry is equal to the

maximum row or column sum of their respective rows (columns). Since D is also

a diagonal matrix, 1−D is similarly everywhere zero with diagonal entries that

are simply the reciprocals of the diagonal entries of D.

()

()

(),:

1

,

 iso_perturb , ,

0,1

1

diag ii

i j

n

n

α

α

δ α

α δ−

′ =

∈  

= −

=

′ = ⋅ ⋅ +

∑

function A A

D A

A D A

end

Figure 4. Isomorphism–preserving stochastic perturbation (PageRank)

There are a variety of other ways to obtain a single stochastic or a double

stochastic matrix, where a double stochastic matrix is a matrix whose rows and

columns all sum to one, i.e., ,: :, 1, .i ii i
i= = ∀∑ ∑A A Two equivalent methods

of obtaining a double stochastic matrix are iterated diagonal scaling or Sinkhorn

scaling, where 1/ 2 1/ 2

1i i i i

− −
+ = ⋅ ⋅A D A D and

1

1 ,
T

i i i

−
+  = ⋅ A A D respectively. An

alternative method of generating a double stochastic matrix from a given matrix

uses the graph complement, G , where

()

,
n

n V
n n

+ ⋅ − +′ = = =A I D A D
A , (3)

= − −A J I A , and D is the corresponding degree matrix of A [13]. Although

we do not use stochastic matrices, our research on them motivated us to use 1−D

in ensuring that the matrix inverse exists to great effect.

7

The PageRank algorithm is given in Figure 5, where we first apply the stochastic

perturbation, and compute the eigen decomposition. We assume the eigenvectors

are ordered by the magnitude of their eigenvalues and extract the leading

eigenvector,
:,

.
n

U We then concatenate the vertex positions with the leading

eigenvector and sort lexicographically, and extract the vertex ordering, p.

()
()

[]
[] []()

1

:,

:,2

 compute_ page_rank , ,

iso_perturb , ,

1,2, ,

lex_sort , 1

ord

n

T

ord

n

n

n

α
α

−

=
′ =

′⋅ Λ ⋅ =
=

=

=

=

function v A

A A

U U A

x U

n

S x n

v S

end

…

Figure 5. PageRank algorithm

A MATLAB implementation is listed in Figure 6. Rounding on line 14 is due to

the use of finite precision (the roundn function is in the mapping toolbox). The

sortrows function performs lexicographic sorting on line 17.

Figure 6. PageRank algorithm (MATLAB source code)

1. function [tA] = iso_perturb(A, n, a)
2. % compute degree matrix
3. D = diag(sum(xA));
4.
5. % compute transform
6. tA = a * D^(-1) * A + (1 - a) / n;
7. end
8.
9. function [p] = compute_page_rank(A, n, a)
10. tA = iso_perturb (A, n, a);
11.
12. % compute leading eigenvector
13. [U, V] = eig(tA);
14. x = roundn(U(:, n), -15);
15.
16. % sort lexicographically
17. S = sortrows([x, [1:n]'], [1]);
18.
19. % extract vertex ordering
20. p = S(:, 2);
21. end

8

3 Fundamental Constructs
This section describes several key abstractions of PageRank that greatly aided

IsoRank’s development. We recall we are interested in computing a canonical

isomorph, .ωA Thus, key idea is to apply the induced permutation yielded by a

vertex ordering algorithm, such as PageRank, to the input adjacency matrix, A,

as shown in Figure 7. The equivalent MATLAB source code is listed in Figure 8,

where lines 3–5 are replaced with “Aomega = A(phi, phi); ” in practice.

()
()

,

 = find_isomorph , ,

compute_page_rank , ,

(,:)
n n

T

n a

n a

ω

ω

ω

ω ω ω

φ

φ

=

=

= ⋅ ⋅

function A A

A

P I

A P A P

end

Figure 7. Applying an induced pPermutation

Figure 8. Applying an induced permutation (MATLAB source code)

3.1 Information Matrices
The PageRank algorithm computes only one eigenvector; this is primarily driven

by the fact that the Perron-Frobenius theorem only guarantees the existence of a

single eigenvector. Thus began our search for a more robust set of vectors that

we refer to as an information matrix. The first information matrix we considered

was the entire set of eigenvectors; however, they did not significantly improve

our ability to find a canonical isomorph. Previous work has also considered such

information matrices; the eigenvectors are a frequent candidate [6][13].

We conjectured an ideal information matrix would be unique up to isomorphism,

i.e., ,
T T⋅ ⋅ ↔ ⋅ ⋅P A P P X P where X is the desired information matrix. One such

matrix is the all-pairs shortest path (APSP) distance matrix, which is obtainable

in ()3
nΟ time. This led us to consider similar matrices computable in ()3

nΟ

time, most notably, the pseudoinverse,
†
,A and the matrix inverse,

1
,

−
A but

several issues preclude the immediate use of either. First, the pseudoinverse,

although it always exists and has been used in other algorithms for determining

isomorphism [2], it may yield provide less than our goal of n information vectors

and can numerically difficult to compute. The inverse may simply not exist; a

key result of our work is how we perturb A such that 1−A is guaranteed to exist.

1. function [Aomega] = find_iso(A, n, a)
2. phi = compute_page_rank(A, n, a);
3. I = eye(n);
4. Pomega = I(phi, :);
5. Aomega = Pomega * A * Pomega';
6. end

9

3.2 Isomorphism-Preserving Perturbations
A graph perturbation (matrix perturbation), induces changes on the underlying

graph (matrix), e.g., by adding random edges between arbitrary vertices. If

1 2
,G G≅ an isomorphism-preserving perturbation yields

1 2
,G G′ ′≅ where G′ is

a perturbed graph (matrix), e.g., adding a loop to all vertices. Such a perturbation

should increase computing efficiency, increase our ability to find ,ωA decrease

the condition number, () ,κ A and be invertible, i.e., G is obtainable from .G′

We use isomorphism-preserving perturbations to ensure the information matrix

of interest, () 1
,

−′A exists, where ′A is obtained by perturbing A.

3.2.1 Distinguishing Graphs by Vertex Augmentation
A simple isomorphism-preserving perturbation for ensuring connectivity is to

add a vertex to the graph, which we call the β-vertex, and an edge between this

vertex and all existing vertices. This perturbation appears in many contexts and

has been shown to aid distinguishing the eigenvalues of non-isomorphic graphs,

however, it does not serve as a complete invariant [20], Section 4.5.5 in [6]. We

observed a similar effect—even for connected graphs, adding a single vertex

linked to all vertices improves our ability to find a canonical isomorph. One

effect of adding vβ is that it forces the diameter to be either one or two. Thus,

we have (), ,G V Eβ β β= where { }V V vβ β= ∪ and { }{ }, , .
i i

E E v v v Vβ β= ∪ ∀ ∈

Therefore, () () 1 1n V G V G nβ β β= = + = + , and () () () .E G E G V Gβ β = +

This perturbation is akin to adding a ‘1’s column to ensure a y-intercept, i.e.,
0
,β

in linear regression, hence are dubbing this as the � -vertex perturbation (4).

1,1 1,

,1

n

nβ
 

′ = =  
 

0 1
A A

1 A
 (4)

3.2.2 Ensuring Invertibility by Diagonal Dominance

The pseudoinverse, () 1
†

,
T T

−
= ⋅ ⋅A A A A is often used in linear regression,

always exists; furthermore, † 1−=A A (if 1−A exists). To ensure 1−A exists,

where
1

,
−⋅ =A A I we apply an isomorphism-preserving perturbation based on

spectral graph theory [3], where the Laplacian, ,= −L D A is often studied and

D is the degree matrix of A. We are interested in the signless Laplacian [12],

.+ = +L D A It is known either Laplacian is positive semi-definite, i.e., they do

not always have an inverse. We propose the modified signless Laplacian, of the

form ,
ε ε+ = + + ⋅L D A I

�
 where ε� is a vector of constants. We initially focused

on ,
ε+ = + +L D A I however, 1ε+ −= + +L D A D yields the best results. Since

ε+L is diagonally dominant, it is positive definite and invertible!

10

3.3 Potential Equivalent Vertex Grouping
A key reason for using the inverse as the source of our information matrix, X, is

it can group potentially equivalent vertices, i.e., since 1 .T T−⋅ ⋅ ↔ ⋅ ⋅P A P P A P

This is based on two ideas: first, the inverse of a matrix is unique up to

isomorphism and second, within each row (column) the sorted entries of that row

(column) are unique. Namely, two vertices that are in the same orbit must share

identical entries in their corresponding rows (columns) of the inverse. Since the

inverse of a matrix has n vectors, the sorting of each vector within the inverse is

computable in ()2
logn nΟ ⋅ time, if we assume that the sorting is done by an

implementation of quicksort, e.g, as in MATLAB’s sort function.

3.4 Lexicographic Sorting
We previously introduced lexicographic sorting in the context of the MCI, e.g.,

we recall the MCI of “logarithm” is the sorted string “aghilmort”. We assume we

have obtained an information matrix, X, from the inverse, () 1
,

−′A of a perturbed

matrix, ′A , based on the adjacency matrix, A, of a graph, G, i.e., X is unique up

to isomorphism. For instance, if Table 3(a) is X, sorting each row from left to

right, as shown in Table 3(b), reveals vertices {a, c} may be in the same orbit,

since they both share entries []3,3,7,7 . Lexicographically sorting on Table 3(b)

augmented with the identity vector, []1, 2, , ,nφ = … yields Table 3(c) along with

an induced permutation on the identity vector, φ.

Table 3. Individual row and lexicographic sorting of an information matrix

(a) Raw matrix (b) Row sorting (L � R) (c) Lexicographic sorting

 r s t u

r 7 5 3 7

s 5 9 5 3

t 3 5 7 7

u 7 3 7 3

 r s t u φ

r 3 5 7 7 1

s 3 5 5 9 2

t 3 5 7 7 3

u 3 3 7 7 4

 r s t u φ

u 3 3 7 7 4

s 3 5 5 9 2

t 3 5 7 7 3

r 3 5 7 7 1

The MATLAB sortrows function lexicographically sorts a matrix by rows and

allows us to specify the columns to sort on and uses the same quicksort

implementation as the sort function. The underlying quicksort implementation is

stable, i.e., two equal elements retain their original relative positions after being

s Assuming pair-wise comparisons are used, the quicksort algorithm’s

complexity is ()logn nΘ ⋅ in the worst case to sort arbitrary data. If we assume n

columns are sorted on and that a complete pair of rows may be swapped during a

comparison, i.e., that this is a non-pointer based implementation, then sorting

lexicographically via quicksort, i.e., sortrows, is ()3
log .n nΟ ⋅ Some efficiency

can be gained via by using the underlying sortrowsc function, which only returns

the induced permutation versus the lexicographically sorted n n× matrix.

11

3.5 Iterative Ranking
For a variety of reasons, e.g., numerical conditioning, we considered iteration to

further improve performance. Loosely stated, if computing the inverse, sorting

lexicographically on it, and applying the induced permutation are effective once,

are more iterations beneficial? One question is how much iteration is useful? A

series of permutations creates a permutation chain,
2 1

,
mω = ⋅ ⋅ ⋅P P P P⋯ where

1 2

1 2

m
T

mω ω ω= ⋅ ⋅ = → → →
P P P

A P A P A A A⋯ (5)

and
1i i+→A A denotes

1
.T

i i i i+ = ⋅ ⋅A P A P If we obtain
i

P randomly, ωA is

determined by a random process. However, by computing
i

P deterministically,

we can, for some k and some m, decompose the permutation chain via

1 1 1 1 11

1 1 1

limit sequence limit cycle cycling!

k k k m m k

k k m kω

− + − + +

+ += → → → → → → →
P P P PP PP

A A A A A A⋯ ⋯ ⋯
������������� �������������� �����������

, (6)

where a limit cycle is the permutation sequence, that after being deterministically

reached, e.g., by lexicographic sorting, repeats and a limit sequence is the set of

permutations traversed to reach a limit cycle. By using a limit cycle’s MCI as its

terminal isomorph (attractor), ,ωA we have an attractor set,

{ }
1 2
, , .ω ωΩ =A A A … For an iterative approach to be useful, the limit sequences

(cycles) must be short and the attractor set must be small, i.e., !.nΩA ≪

4 IsoRank: Ordering Vertices on the Matrix Inverse
The IsoRank algorithm is presented in Figure 9. Broadly stated, the algorithm

applies isomorphism-preserving perturbations to the adjacency matrix, computes

the inverse of the perturbed matrix, lexicographically sorts on the information

matrix yielded by the inverse, and applies the induced permutation to the input

adjacency matrix. The most expensive computations are obtaining the inverse

and sorting lexicographically, which are ()3
nΟ and ()3 log ,n nΟ ⋅ respectively.

This process may iterate for as many as ()
2log 1 1n + +  iterations and we track

two previous iterations; reasons for this are presented in our results discussion.

Thus, the IsoRank algorithm executes in ()3 2logn nΟ ⋅ time, if using numerical

libraries, e.g., those used in MATLAB. As will be discussed, this complexity can

be reduced significantly by a rather large factor with a more efficient design.

Perhaps the most critical step of the algorithm is shown on lines 14–15, where

we round entries of the inverse we have obtained. Since we are using finite

precision, and since we are sorting on these entries, it is critical that theoretically

identical entries are also numerically identical. Although rounding handles many

numerical problems we encounter, this step is an active area of our research.

12

Figure 9. The IsoRank algorithm

1. () A compute_iso_rank , ,n tω =function A

2. 1n nβ = +

3.
_ _ 2 _ _1old oldω ω ω= = =A A A A

4. // iterate based on base-2 logarithm relative to size of vertex set

5. ()()2
1 log 1i nβ= +  for to do

6. // add beta vertex

7.
1,1 1,

,1

n

nβ
ω

 
=  
 

0 1
A

1 A

8. // form modified signless Laplacian to ensure inverse exists

9.
1ε

β β β β
+ −= + +A A D D

10. // compute source of information matrix, i.e., the inverse

11. () 1ε
β β

−+=S A

12. // remove corresponding row, but not column, of beta vertex

13. ()2 : , :nβ β β′ =S S

14. // round entries before sorting due to finite precision

15. ()round , tβ β′=T S

16. // sort individual rows of source information matrix

17. ()sort_row_vectorsβ β′ =T T

18. // construct information matrix (row-sorted + raw inverse)

19.
,n n

β β β′ =  X T T I

20. // sort information matrix lexicographically

21. ()()sort_cols_lexically , 1: 2 nβ β β′ = ⋅  X X

22. // extract induced permutation matrix

23. () ()():, 2 1 : 2n n nω ω β β= ⋅ + ⋅ +P X

24. // permute adjacency matrix

25. T

ω ω ω ω= ⋅ ⋅A P A P

26. // check for limit cycle lengths {1,2}, i.e., terminal isomorph

27. ()_ _1 _ _ 2 break()old old iω ω ω ω≡ ∨ ≡if A A A A end

28.
_ _ 2 _ _1old oldω ω=A A

29.
_ _1oldω ω=A A

30. end

31. end

13

5 Implementation Optimization

The IsoRank algorithm is ()3 2
logn nΟ ⋅ if implemented using numerical linear

algebra libraries. A variety of improvements reduce complexity by a large factor.

5.1 Faster Permutations and Inversions
Given an orthogonal matrix, e.g., a permutation matrix, ,P its inverse is defined

by
1

;
T− =P P this reduces computing 1−P from ()3

nΟ to ().nΟ Thus, we can

obtain a permutation,
1
,

−⋅ ⋅P A P by T⋅ ⋅P A P and again, since P is sparse,

reduce this complexity from ()3
nΟ to ()2

.nΟ Furthermore, we can augment

the information matrix with the identity matrix, I, versus an identity vector,

[]1, 2, , ,
T

n=n … reducing the size of the matrix being sorted on by a factor of n.

Perhaps most significantly, since permuting a matrix permutes its inverse, i.e.,
1

1 1 1
,

−− − − ⋅ ⋅ = ⋅ ⋅ P A P P A P by the last result, we only need to compute
1

β
−′  A

and permute it after each of the first ()2log 1n +   iterations. Furthermore, since

β′A is positive definite, we can use Cholesky decomposition to obtain
1

β
−′  A at

an approximate cost of () 3
1 6f n n= ⋅ [7]. Finally, we know that ,D the degree

matrix, is a diagonal matrix, and thus we only need to reciprocate its n diagonal

entries to obtain
1
,

−
D reducing this computation from ()3

nΟ to ().nΟ

5.2 Implementation-Specific Issues
There are several implementation issues to consider in MATLAB, the following

ones have yielded the most significant improvement: using vectors in lieu of for

loops, calling the sortrowsc function versus sortrows, using sparse matrices if

applicable, and using linsolve if operating on dense matrices. We currently use

the β-vertex perturbation to process graphs with multiple components—this can

be significantly improved by pre-processing the graph to separate components.

5.3 Leveraging Parallel Libraries
We have scaled up to 8 processors using the Intel BLAS libraries provided with

MATLAB. These libraries are accessed by setting the “BLAS_VERSION” and

“OMP_NUM_THREADS” environment variables to specify the BLAS library

and number of CPUs, e.g., “mkl_p4.dll” and “2”, respectively.

5.4 Using Symbolic Libraries
A different type of performance issue arises from the use of finite precision. We

have used three symbolic libraries: the Maple engine in the symbolic toolbox,

Mathematica, and the Gnu Multiple Precision (MP) library. The use of symbolic

libraries particularly benefits from the suggestions in Section 5.1.

14

6 Results
To evaluate these ideas, we constructed 1,024 x {16, 64}-vertex random graphs

using ()Pr 0.5
i

e = and () []Pr 1 ,1
i

e n∈ along with two isomorphs of each test

graph. Each entry in the tables below reflect the number of pairs successfully

identified, i.e., ideally, 1024 pairs. These are small, easy graphs; we observe

similar results on various regular graphs, e.g., ladders and Mobiüs ladders,

random regular graphs, and Paley graphs [9]. In addition, we have tested variants

of IsoRank on dense (sparse) graphs having many as 4,000 (40,000) vertices.

6.1 Eiegenvectors (one iteration)
Table 4 shows sorting on a single eigenvector, as in PageRank, finds a canonical

isomorph for ~50% of the graph pairs. Although overall performance decreases

if () []Pr 1 ,1 ,
i

e n∈ sorting on all eigenvectors has a slight very advantage. This

experiment did not apply the β-vertex or signless Laplacian perturbation.

Table 4. One versus All Eigenvectors (1 iteration)

Pr(ei ∈∈∈∈ E) 0.5 [1/n, 1]

Number of Vertices 16 64 16 64

One eigenvector 509 515 483 498

All eigenvectors 509 515 506 502

6.2 Eiegenvectors (()2log 1 1n + +   iterations)

Iterating by as many as ()2
log 1n + iterations improves the chances of finding a

canonical isomorph from ~50% to ~75%, as shown in Table 5. This experiment

also did not leverage the β-vertex or signless Laplacian perturbation.

Table 5. One versus All Eigenvectors (()2log 1 1n + +   iterations)

Pr(ei ∈∈∈∈ E) 0.5 [1/n, 1]

Number of Vertices 16 64 16 64

One eigenvector 766 763 728 749

All eigenvectors 766 763 778 766

6.3 Using the Inverse and Pseudoinverse
Table 6 reveals sorting on either the pseudoinverse or the inverse dramatically

improve performance. We use the β-vertex perturbation to obtain the inverse and

the pseudoinverse; we used the signless Laplacian when obtaining the inverse,

but not the pseudoinverse. We see IsoRank correctly determines isomorphism,

using the inverse for all 1,024 random test pairs.

Table 6. A
†
 versus A

-1
,
�

-vertex, w/iterations

Pr(ei ∈∈∈∈ E) 0.5 [1/n, 1]

Number of Vertices 16 64 16 64

Pseudoinverse 917 1024 798 968

Inverse 1024 1024 1024 1024

15

6.4 Timing
We recall we are primarily interested in the resulting ranking. Thus, we have not

compared our execution times (thus far) with nauty or additional algorithms that

determine isomorphism. We provide a sample of our execution times using a

reasonably efficient implementation in Table 7, where all times are in seconds.

The experiments were conducted on an 8-way Intel Xeon machine operating at

3.00 GHz with 3.00 GB of RAM. The graphs were all dense random graphs of

50% edge density, i.e., ()Pr 0.5.
i

e = We generated 100 test pairs for

{ }1,2,4,8,16,32,64,128,256n = and 10 pairs for 256.n > This is not a rigorous

analysis; it is simply intended to provide an idea of IsoRank’s execution time.

All times are for computing/comparing canonical isomorphs of two input graphs.

Table 7. Average Execution Times on Random Graphs, ()Pr 0.5
i

e =

(time in seconds to compute and compare ωA given two random isomorphs)

 Number of CPUs for BLAS Libraries

n V= 1 2 4 8

1 0.0016 0.0017 0.0020 0.0016

2 0.0022 0.0023 0.0023 0.0015

4 0.0023 0.0023 0.0023 0.0016

8 0.0022 0.0022 0.0023 0.0015

16 0.0027 0.0030 0.0031 0.0032

32 0.0053 0.0041 0.0042 0.0031

64 0.0099 0.0112 0.0120 0.0109

128 0.0330 0.0314 0.0327 0.0313

256 0.1599 0.1467 0.1517 0.1470

512 0.9062 0.7998 0.8002 0.7828

1024 5.4764 4.6922 4.5957 4.3407

2048 29.0875 24.6955 22.0735 20.0425

4096 167.5541 124.8512 108.5633 99.1695

6.5 Symbolic Testing and Iteration Limits
We have tested IsoRank using symbolic libraries on graphs of up to eight

vertices (12,598 unique graphs). By linking a symbolic library to IsoRank, we

found the same canonical isomorph for all but seven of these graphs; adding the

equivalent vertex grouping feature resolved this issue, i.e., IsoRank can

determine isomorphism of graphs with eight or fewer vertices. Although for

small graphs, this experiment aided in verifying IsoRank’s correctness.

Omitted analysis reveals at most ()2log 1 1n + +   iterations are present in a limit

sequence and limit cycles are of length 1 or 2, including all tested “pathological”

graphs, e.g., challenge graphs [15] and those based on Hadamard matrices [16].

The attractor set, unfortunately, can be quite large for pathological graphs.

16

7 Conclusions
We present a polynomial-time algorithm for ranking the vertices of a graph in a

numerically stable manner. In many instances, this ranking is also canonical, i.e.,

it can be used to determine graph isomorphism. If we assume the input graph is

non-pathological, i.e., that it is not strongly regular, then the most critical issue

affecting our results are the condition number, (),κ A and the numerical stability

of the algorithm computing 1.−A We are researching ways to improve ()κ A by

another isomorphism-preserving perturbation or using iterative solvers. For

example, we some measurable differences in our results if we sort in ascending

versus descending order. We are also exploring three areas beyond the impacts

of numerical conditioning.

The first area lies at the heart of our reason for tackling this problem: finding an

efficient method of canonically ranking a large sensor network, containing many

tens of thousands of nodes. To this end, we are exploring IsoRank’s behavior if

we only sort on the vector associated with the � -vertex, versus computing the

entire inverse. This immediately reduces the complexity by a factor of n, renders

iterative methods for solving such a system more attractive, and when coupled

with sparse matrices, enables us to tackle relatively large systems. i.e., we can

test trees having 30,000 vertices (in under one second).

The fundamental graph-theoretic issue we are exploring, assuming we calculate

the entire inverse, are useful and correct methods to map IsoRank into more

traditional approaches of determining graph isomorphism. The primary route we

are considering is using the inverse of the propsed modified signless Laplacian

as the selection method using a traditional backtracking approach. This aspect of

the research also involves some work involving coloring nodes in a deterministic

manner and (re)-computing the inverse based on this coloring. In particular, we

are exploring how many colors are needed to ensure the inverse has unique rows.

The last area we are studying is related to our original problem: linearizing a set

of k-dimensional points by ranking vertices based on their 2-D distance matrix.

This has implications related to data storage, logistics, and network security. We

are at an early stage of this portion of the research and welcome any suggestions.

We close by emphasizing the simplicity of the IsoRank algorithm: by adding a

single vertex, ,vβ linking it to all other existing vertices, adding the degree sum

and its reciprocal to the diagonal of this new adjacency matrix, and applying up

to ()
2

log 1 1n + + induced permutations, obtained by lexicographically sorting on

the inverse of the perturbed matrix, the IsoRank algorithm ranks vertices in

polynomial time, and often yields a canonical isomorph.

Acknowledgments
We thank Dave Doak for support of the symbolic and parallel computation tests.

We also thank Terry McKee for providing us a reference to the house graph.

17

8 References

[1] L. Beineke, and R. Wilson, Eds. Topics in Algebraic Graph Theory.

Cambridge University Press, 2004.

[2] J. Bennett and J. Edwards. A graph isomorphism algorithm using

pseudoinverses. BIT Numerical Mathematics. Springer, 36(1):41–53, 1996.

[3] F. Chung. Spectral Graph Theory. Regional Conference Series in

Mathematics, American Mathematical Society, 1994, 92.

[4] L. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm

for matching large graphs. In Proceedings of the 3rd IAPR-TC15 Workshop

on Graph-Based Representations in Pattern Recognition, May 2001.

[5] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme.

Autonomous deployment and repair of a sensor network using an unmanned

aerial vehicle. In Proc. of the 4th Int’l Conf. on Robotics and Automation,

IEEE, 2004.

[6] D. Cvetković, P. Rowlinson, and S. Simić. Eigenspaces of Graphs.

Cambridge University Press, 1997.

[7] B. Datta. Numerical Linear Algebra and Applications. Brooks/Cole, 1994.

[8] J. Faulon. Isomorphism, automorphism partitioning, and canonical labeling

can be solved in polynomial-time for molecular graphs. Journal of Chemical

Information and Computer Sciences, 38(3):432–444, 1998.

[9] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, 2001.

[10] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier,

1980.

[11] S. Greenblatt, T. Coffman, and S. Marcus. Behavioral Network Analysis for

Terrorist Detection. In Emergent Information Technologies and Enabling

Policies for Counter-Terrorism. R. Popp and J. Yen, Eds., IEEE, 2006.

[12] W. Haemers and E. Spence. Enumeration of cospectral graphs. European

Journal of Combinatorics, 25(2):199–211, 2004.

[13] P. He, W. Zhang, and Q. Li. Some further development on the eigensystem

approach for graph isomorphism detection. Journal of the Franklin

Institute, Elsevier, 342(6):657–673, 2005.

[14] Y. Koren. Drawing Graphs by Eigenvectors. Computers and Mathematics

with Applications. Elsevier, 49(11):1867–1888, 2005.

[15] R. Mathon. Sample graphs for isomorphism testing. In Proceedings of the

9th Southeastern Conf. on Combinatorics, Graph Theory, and Computing.

Congressus Numerantium, Utilitas Publishing, 1978, 21, 499–517.

18

[16] B. McKay. Practical Graph isomorphism. In Proc. of the 10th Manitoba

Conference on Numerical Mathematics and Computing. Congressus

Numerantium, Utilitas Mathematical Publishing, 30:45-87, 1981.

[17] P. Ning and D. Xu. Learning attack strategies from intrusion alerts. In

Proceedings of the 10th Conference on Computer and Communications

Security (CCS) (Washington D.C.). ACM Press, 2003, 200-209.

[18] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather. SubGemini: identifying

subcircuits using a fast subgraph isomorphism algorithm. In Proceedings of

the 30th Int’l Conference on Design Automation, Dallas, TX, ACM, 1993.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation

Ranking: Bringing Order to the Web. TR 1999-66, Stanford University,

Stanford, MA, 1998.

[20] G. Prabhu and N. Deo. On the power of a perturbation for testing non-

isomorphism of graphs. BIT, Springer, 24(3):302-307, 1984.

[21] R. Read and D. Corneil. The graph isomorphism disease. Journal of Graph

Theory, 1(1):339–363, 1977.

[22] G. Strang. Linear Algebra and Its Applications. Thomson Learning, 1988.

[23] G. Tinhofer and M. Klin. Algebraic Combinatorics in Mathematical

Chemistry. Graph Invariants and Stabilization Methods. TR TUM-M9902,

Technische Universität München, München, Germany, 1999.

[24] R. Varga. Geršgorin and His Circles. Springer, 2004.

19

Appendix A

We provide a basic MATLAB implementation of IsoRank in Figure 10. On

line 24, we use "X = tA \ I" , which is more numerically stable and efficient

than "X = tA^(-1)" or "X = inv(tA)" . On line 25, we round 14 places

to the right of the decimal; the roundn function is in the mapping toolbox.

Figure 10. An IsoRank Implementation (MATLAB)

1. function [oA] = compute_iso_rank(A, n)
2. oA = A;
3. % perform iterations
4. iters = ceil(log2(n + 1)) + 1;
5. for i = 1:iters
6. % compute & apply permutation
7. pA = compute_iso_perm(oA, n);
8. oA = oA(pA, pA);
9. end
10.end
11.
12.function [pA] = compute_iso_perm(A, n)
13. % add beta vertex
14. j = ones(n, 1);
15. bA = [0, j'; j, A];
16.
17. % force A^(-1) to exist (SDDD)
18. d = sum(bA);
19. tA = bA + diag(d + 1./d);
20.
21. % compute info matrix, A^(-1)
22. X = tA \ eye(n + 1);
23.
24. % round information matrix
25. X = roundn(X, -14);
26.
27. % sort rows of info matrix
28. T = sort(X, 2);
29.
30. % prepare lexicographic sort
31. augX = [T, X];
32. nC = 2 * (n + 1);
33. [S, pA] = sortrows(augX, [1:nC]);
34.
35. % remove beta vertex permutation entry
36. iBeta = find(pA(:, 1) == 1);
37. pA(iBeta, :) = [];
38. pA = pA – 1;
39.end

20

Appendix B

This appendix applies the IsoRank algorithm to the “house” graph in Figure 1(a).

We first observe that 5, 6,V E= = and () 1.Gκ = By inspection, we also see

that () () { }, ,orb a orb c a c= = () () { }, ,orb b orb d b d= = and () { };orb e e=

vertex labels are used only for convenience. Figure 1(b) shows the result of

applying the β-vertex and modified signless Laplacian isomorphism-preserving

perturbations. The lighter dotted lines are the edges linking all vertices with .vβ

The darker loops linked to a vertex are the result of the modified signless

Laplacian; the weight is listed inside each loop, () () ()deg 1 deg .
i i i

w v v v= +

b

c d

a

e

b

c d

a

e

b

c d

a

eβ
1

5
5

+

13
3

+ 14
4

+

13
3

+

1
3

3
+

14
4

+

b

c d

a

eβ
1

5
5

+

13
3

+ 14
4

+

13
3

+

1
3

3
+

14
4

+

(a) Original (b) Perturbed (β-vertex / ε+L)

Figure 1. The “house” graph (original and perturbed)

Table 8 lists the adjacency matrices corresponding with the graphs shown in

Figure 1. The β-vertex perturbation adds a row and column, and the row

(column) sums are placed on diagonal entries, by way of
1
.

ε
β β β β
+ −= + +A A D D

Table 8. Adjacency matrices of the “house” graph (original and perturbed)

(a) Original (b) Perturbed (β-vertex / ε+L)

 a b c d e β a b c d e

 β
1

5
5 1 1 1 1 1

a 0 1 1 0 0 a 1
1

3
3 1 1 0 0

b 1 0 0 1 1 b 1 1
1

4
4 0 1 1

c 1 0 0 1 0 c 1 1 0
1

3
3 1 0

d 0 1 1 0 1 d 1 0 1 1
1

4
4 1

e 0 1 0 1 0 e 1 0 1 0 1
1

3
3

21

The symbolic inverse of the perturbed matrix from Table 8(b) is shown in

Table 9. We only use the symbolic inverse here for illustration; it is computed

numerically unless conducting experiments to assess the impact of conditioning

i.e., of ().κ A

Table 9. The inverse of the perturbed “house” graph

 β a b c d e

β
11490

49853

2370

49853
− 1220

49853
− 2370

49853
− 1220

49853
− 2715

49853
−

a
2370

49853
− 1488912

3938387
 382068

3938387
− 455355

3938387
− 216168

3938387
 1341

49853

b
1220

49853
− 382068

3938387
− 1153772

3938387

216168

3938387

242112

3938387
− 3096

49853
−

c
2370

49853
− 455355

3938387
− 216168

3938387

1488912

3938387

382068

3938387
− 1341

49853

d
1220

49853
− 216168

3938387
 242112

3938387
− 382068

3938387
− 1153772

3938387
 3096

49853
−

e
2715

49853
− 1341

49853
 3096

49853
− 1341

49853

3096

49853
− 17628

49853

We remove the row of the inverse belonging to the β-vertex; we could remove

the permuted position of the β-vertex later; it is convenient to do so here. We

typically round to 12–15 digits of precision, but use 3 digits in this example.

Table 10. Removing the ββββ-vertex row and rounding

 β a b c d e

a -0.048 0.378 -0.097 -0.116 0.055 0.027

b -0.024 -0.097 0.293 0.055 -0.061 -0.062

c -0.048 -0.116 0.055 0.378 -0.097 0.027

d -0.024 0.055 -0.061 -0.097 0.293 -0.062

e -0.054 0.027 -0.062 0.027 -0.062 0.354

Before sorting and to facilitate presentation, we map unique inverse values,

[]0.116, 0.097, ,0.378− − … to []1,2, ,12 ,… respectively, as shown in Table 11.

22

Table 11. Mapping entries to integers (presentation only)

 β a b c d e

a 6 12 2 1 9 8

b 7 2 10 9 4 3

c 6 1 9 12 2 8

d 7 9 4 2 10 3

e 5 8 3 8 3 11

We now sort the individual rows of the mapped inverse to facilitate orbit

grouping, as shown in Table 12. We see that entries are sorted from left to right

within each row. To save space, we use the “Equal Rows” column in the

remainder of this appendix.

Table 12. Sorting entries within each row of the inverse

 β a b c d e Equal Rows?

a 1 2 6 8 9 12 a, c

b 2 3 4 7 9 10 b, d

c 1 2 6 8 9 12 a, c

d 2 3 4 7 9 10 b, d

e 3 3 5 8 8 11 e

We construct an information matrix by concatenating the “Equal Rows” column

of Table 12, Table 11, and the identity matrix, I, as shown in Table 13

Table 13. Constructing the information matrix

Mapped Inverse I

Equal

Rows? β a b c d e a b c d e

a a, c 6 12 2 1 9 8 1 0 0 0 0

b b, d 7 2 10 9 4 3 0 1 0 0 0

c a, c 6 1 9 12 2 8 0 0 1 0 0

d b, d 7 9 4 2 10 3 0 0 0 1 0

e e 5 8 3 8 3 11 0 0 0 0 1

23

We now lexicographically sort the information matrix, the algorithm’s key step.

The two equivalent vertex pairs appear equivalent with respect to their entries in

the “Equal Rows” and β-vertex columns. The ties between { },a c and { },b d are

resolved by sorting on column ‘a’, where entries involved in sorting are shaded.

In this example, we thus do not need to sort on columns [], , ,b c d e . We observe

sorting induces an ordering, i.e., a permutation, on the identity matrix, our

primary objective. If we are using the quicksort algorithm, then in the worst case,

if all columns had to be sorted, this step would terminate in ()3 logn nΟ ⋅ time.

Table 14. Sorting the information matrix lexicographically

Mapped Inverse P

Equal

Rows? β a b c d e a b c d e

a a, c 6 1 9 12 2 8 0 0 1 0 0

b a, c 6 12 2 1 9 8 1 0 0 0 0

c b, d 7 2 10 9 4 3 0 1 0 0 0

d b, d 7 9 4 2 10 3 0 0 0 1 0

e e 5 8 3 8 3 11 0 0 0 0 1

We then extract the induced permutation and apply it to A, i.e.,

,T

ω = ⋅ ⋅A P A P as shown in Table 15.

Table 15. Permuting the adjacency matrix to obtain ωA

P A P
T

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 1 1 0 0 1 0 0

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0

0 0 0 1 0 0 1 0 1 0 0 0 1 0

0 0 0 0 1

×

0 1 0 1 0

×

0 0 0 0 1

The result of this permutation, ,ωA is shown in Table 16. Further iteration

yields the same isomorph, thus, we entered a limit cycle of length one on the first

iteration, and the limit sequence required to find the limit cycle is of length zero.

Since all isomorphs of the “house” graph yield the same terminal isomorph, there

is only one terminal isomorph in the limit cycle set, i.e., { }.ωΩ =A A Thus, we

conclude IsoRank finds a canonical isomorph of the house graph, since 1.Ω =A

24

Table 16. The resulting canonical isomorph, ωA

 c a b d e

c 0 1 0 1 0

a 1 0 1 0 0

b 0 1 0 1 1

d 1 0 1 0 1

e 0 0 1 1 0

