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Abstract 

 

The PageRank algorithm perturbs the adjacency matrix defined by a set 

of web pages and hyperlinks such that the resulting matrix is positive 

and row-stochastic. Applying the Perron-Frobenius theorem establishes 

that the eigenvector associated with the dominant eigenvalue exists and 

is unique. For some graphs, the PageRank algorithm may yield a 

canonical isomorph. We propose a ranking method based on the matrix 

inverse. Since the inverse may not exist, we apply two isomorphism-

preserving perturbations, based on the signless Laplacian, to ensure that 

the resulting matrix is diagonally dominant. By applying the Gershgorin 

Circle theorem, we know this matrix must have an inverse, namely, a 

set of vectors unique up to isomorphism. We concatenate sorted rows of 

the inverse with its unsorted rows, lexicographically sort on the 

concatenated matrix, and apply the ranking as an induced permutation 

on the input adjacency matrix. This preliminary report shows IsoRank 

identifies most random graphs and always terminates in polynomial 

time, illustrated by the execution run times for a small set of graphs. 

IsoRank has been applied to dense graphs of as many as 4,000 vertices. 
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1 Introduction 

1.1 Motivation 
In our work, we study weighted graphs derived by computing the pair-wise 

distances of n vertices distributed in k-dimensional (k-D) space. For instance, if 

the 3-D geographic coordinates of an unmanned aerial vehicle (UAV) swarm are 

given as input, these coordinates would be mapped a 2-D distance matrix, i.e., a 

weighted graph, by an arbitrary distance metric, such as their Euclidean distance. 

The algorithm we describe herein accepts weighted graphs (distance matrices); 

however to simplify our discussion, we assume the resulting 2-D distance matrix 

is a symmetric { }0,1  matrix whose main diagonal is everywhere zero, i.e., it is 

the adjacency matrix, A, representing a simple and connected graph, G. 

Our first objective is to rank the n vertices (UAVs) relative to their importance 

within the 2-D distance matrix; ideally, this ordering should also be canonical. 

Since canonically ranking a graph’s vertices is equivalent to the difficult problem 

of determining graph isomorphism, we initially restricted ourselves to finding an 

ordering that addressed our fundamental objective, ordering vertices with respect 

to their relative importance. We began by considering spectral algorithms, i.e., 

those based on the eigen decomposition, as they have been similarly useful when 

drawing graphs [14] and ranking web pages for search engines [19]. 

We observed that the PageRank algorithm [19] yields canonical isomorphs for 

many random graphs. The PageRank algorithm perturbs an input matrix, A, such 

that the resulting matrix, ,′A  is strictly positive and row-stochastic. By applying 

the Perron-Frobenius theorem, we know that the eigenvector associated with the 

leading eigenvalue of such a matrix exists and is unique [22]. PageRank orders 

vertices on this eigenvector’s entries; since an entry may occur multiple times, 

PageRank does not typically yield a canonical isomorph for an arbitrary graph. 

Further work revealed that iteratively applying the PageRank algorithm yields 

a canonical isomorph more often, where iteration is logarithmic with respect to 

the number of vertices. We then investigated if sorting lexicographically on an 

information matrix, X, e.g., on all eigenvectors, versus on a single vector, further 

improved performance. We concluded X must be unique up to isomorphism, i.e., 

X must satisfy 
1 1

,
− −⋅ ⋅ ↔ ⋅ ⋅P A P P X P  where P is a permutation matrix and 1−P  

denotes the matrix inverse. One such matrix satisfying this expression, i.e., a 

matrix that is unique up to isomorphism, is 
1
,

−=X A  the matrix inverse of A. 

Since 1−A  may not exist, we apply two isomorphism-preserving perturbations 

and thus obtain a strictly diagonally dominant matrix, .′A  The Gershgorin circle 

theorem can be used to prove a diagonally dominant matrix is positive definite, 

i.e., that ( ) 1−′A exists [24].  By suitably constructing X from ( ) 1
,

−′A  ordering a 

graph’s vertices based on iterative lexicographic sorting of X yields a canonical 

isomorph in polynomial time for many graphs, including certain regular graphs. 
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2 Background 

2.1 Deciding Isomorphism 
An oft-cited application for an algorithms that decides graph isomorphism is the 

comparison of two chemicals, i.e., identifying isomers [8][23]. Other uses are 

locating electrical circuits within larger circuits [18], merging attack trees [17], 

data mining [11], and validating deployed sensor networks, e.g., by a UAV [5]. 

The plethora of research in deciding graph isomorphism has been of such extent 

a classic survey paper is aptly titled “The Graph Isomorphism Disease” [21]. 

An algorithm for deciding graph isomorphism accepts arbitrary graphs; an 

algorithm for determining graph isomorphism fails in one or more instances. 

Thus, the algorithm described herein, IsoRank, determines isomorphism, e.g., it 

has difficulty with strongly regular graphs. The key contribution is the simplicity 

and novelty of the approach, along with the promising, albeit preliminary results. 

In particular, IsoRank yields canonical isomorphs more often than PageRank, the 

algorithm we derived it from, and like PageRank, terminates in polynomial time.  

2.1.1 Deciding Graph Isomorphism 

Two graphs, 
1

G  and 
2
,G  are mutual isomorphs, denoted 

1 2
,G G≅  if their edge 

sets define equivalent relationships on their vertices. Formally, 
1 2

G G≅  if and 

only if a permutation, ,φ  satisfying (1) exists. For each edge, { } 1
, ,

i a b
e v v E= ∈  

an equivalent edge, ,
j

e  exists in 
2
,E  where 

1
,

a b
v v V∈  and ( ) ( ){ }, .j a be v vφ φ=  

 ( )
{ }

( ) ( ){ }

1 2

1 2

1 1

2

s.t.

, , ,

,

i a b a b

j a b

G G

V V

e v v E v v V

e v v E

φ

φ φ

≅

∃ =

∀ = ∈ ∧ ∈

∃ = ∈

վ

 (1) 

For instance, permuting the “house” graph [10] shown in Figure 1(a) by the 

permutation [ ], , , ,a e b b c a d c e dφ = → → → → →  yields the isomorph shown 

in Figure 1(b). The difficulty is in finding a suitable  φ; thus far, the problem of 

deciding isomorphism remains in NP and is not yet known to be in P. 

d

a c

b

e

 

e

c d

b

a

 

(a) 
1
,G  random isomorph (b) 

2
,G  another isomorph 

Figure 1. Isomorphs of the “houseg Graph 
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2.1.2 Deciding Matrix Isomorphism 

Given the adjacency matrices, 
1

A  and 
2
,A  of graphs, 

1
G  and 

2
,G  we similarly 

can decide whether 
1 2

.≅A A  Formally, 
1 2

≅A A  if and only if there exists a 

permutation matrix, P, satisfying (2), where P is obtained by permuting the 

columns (rows) of the identity matrix, 
,

,
n n

I  via a permutation, ,1,nφ  and .n V=  

  1

1 2 2 1 1
s.t. T −≅ ↔ ∃ = ⋅ ⋅ = ⋅ ⋅A A P A P A P P A P  (2) 

The graphs shown in Figure 1 yield the adjacency matrices of Tables 1(a) and 

1(b). We satisfy (2) by mapping [ ]5, 2,1,3, 4φ =  to a permutation matrix, 

,

,:

n n

φ=P I , as shown in Table 1(c). By comparing all !n  permutations of 
1

A  with 

2
,A  we can equivalently decide matrix isomorphism, i.e., graph isomorphism. 

Table 1. Isomorphic adjacency matrices of the house graph 

 a b c d e 

a 0 1 1 0 0 

b 1 0 0 1 1 

c 1 0 0 1 0 

d 0 1 1 0 1 

e 0 1 0 1 0  

 

 a b c d e 

a 0 1 0 0 1 

b 1 0 1 0 1 

c 0 1 0 1 0 

d 0 0 1 0 1 

e 1 1 0 1 0  

 

 5 2 1 3 4 

5 0 0 0 0 1 

2 0 1 0 0 0 

1 1 0 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0  
(a) 

1
A   (b) 

2
A   (c) P  

2.1.3 Canonical Isomorphs 

An approach used in many algorithms for deciding isomorphism is to compute a 

canonical isomorph, ,ωA  where if [ ] [ ]1 2
,ω ω=A A  then 

1 2
≅A A . For instance, 

the minimum canonical isomorph (MCI) is the isomorph that yields the smallest 

number, ( )num ,A  if we concatenate consecutive columns of A’s upper triangle, 

i.e., ( ) ( )( )MCI min num , !.i i n= ≤A A  Thus, with respect to Table 1, we have that 

( )1 2
num 1100011101=A  and that ( )2 2

num 1001101101 .=A  The MCI of the 

house graph is shown in Table 2, where ( ) 2
num 0011101101 ,ω =A  obtained by 

lexicographically sorting all !n  isomorphs of A. To further reinforce this idea, 

we note the lexicographic MCI of “logarithm” and “algorithm” is “aghilmort”. 

Table 2. Minimum canonical isomorph (MCI) of the house graph 

 v1 v2 v3 v4 v5 

v1 0 0 0 1 1 

v2 0 0 1 0 1 

v3 0 1 0 1 0 

v4 1 0 1 0 1 

v5 1 1 0 1 0 
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2.1.4 Invariants 

An invariant, 
�

, is a necessary, but insufficient, condition for two graphs to be 

isomorphic, i.e., 
1 2

ψ ψ=  if 
1 2

.≅A A  It is generally useful to compare a set of 

invariants of increasing complexity prior to executing a more complex algorithm 

for computing their canonical isomorphs. A common set of invariants is given in 

Figure 2, where we assume the lower bound on computing ωA  is ( )3
logn nΩ ⋅  

and that all matrices are stored in a dense, i.e., non-sparse, format. 

( )
( )

( )
( )

( )

1 1 2 2

1

2

2

2

3

3

4

 _ is_invars_match , , ,

//  : compare number of vertices, 1

//  : compare number of edges, 

//  : compare sorted degree sequence, log

//  : compare eigenvalues, 

is match n n

n

n n

n

ψ

ψ

ψ

ψ

=

Θ

Θ

Θ ⋅

Θ

function A A

end

 

Figure 2. Comparing graph invariants  

2.1.5 A Template Method for Deciding Isomorphism 

Invariants and canonical isomorphs provide the machinery to define a template 

for deciding isomorphism, shown in Figure 3. The difficulty lies in efficiently 

finding a canonical isomorph. An oft-cited algorithm of choice is nauty [16], 

which computes the MCI of a reduced set of permutations that is obtained via 

pruning based on discovered automorphisms. A variant of this template approach 

is to directly match two graphs versus finding a canonical isomorph [4]. 

( )

( )
( )

[ ] ( )
[ ] ( )

1 1 2 2

1 1 2 2

1 1 1

2 2 2

 is_iso , , ,

// compare invariants 

is_invars_match , , ,

 

// compute & compare canonical isomorphs

find_iso_canon ,

find_iso_canon ,

 

isIso n n

isInvarsMatch n n

isInvarsMatch

n

n

ω

ω

=

=

=

=

function A A

A A

if

A A

A A

if A[ ] [ ]( )1 2   true

false

ω ω
= A return end

end

return

end

 

Figure 3. Deciding isomorphism with canonical isomorphs 
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2.2 The PageRank Algorithm 
Our work is motivated by the PageRank algorithm [19], which orders vertices on 

the dominant eigenvector of a perturbed adjacency matrix that is forced to be 

positive and stochastic. By the Perron-Frobenius theorem [22], such a matrix has 

a unique eigenvector that is associated with its largest eigenvalue [1]. 

Furthermore, it also corresponds to the stationary distribution if the matrix is also 

a positive single stochastic matrix [22], where a single stochastic matrix is a 

matrix whose rows (columns) sum to one, i.e., ,: 1, .ii
i= ∀∑ A  The PageRank 

algorithm applies an isomorphism-preserving perturbation, shown in Figure 4, 

to the input matrix such that the resulting matrix is a positive single stochastic 

matrix, where 0,1α ∈    scales the non-zero entries and ( )1 nδ α= −  is the 

assumed probability a surfer randomly selects an arbitrary page. The matrix, D, 

is the vertex degree defined previously, i.e., each diagonal entry is equal to the 

maximum row or column sum of their respective rows (columns). Since D is also 

a diagonal matrix, 1−D  is similarly everywhere zero with diagonal entries that 

are simply the reciprocals of the diagonal entries of D.  

( )

( )

( ),:

1

,

 iso_perturb , ,

0,1

1

diag ii

i j

n

n

α

α

δ α

α δ−

′ =

∈  

= −

=

′ = ⋅ ⋅ +

∑

function A A

D A

A D A

end

 

Figure 4. Isomorphism–preserving stochastic perturbation (PageRank) 

There are a variety of other ways to obtain a single stochastic or a double 

stochastic matrix, where a double stochastic matrix is a matrix whose rows and 

columns all sum to one, i.e., ,: :, 1, .i ii i
i= = ∀∑ ∑A A  Two equivalent methods 

of obtaining a double stochastic matrix are iterated diagonal scaling or Sinkhorn 

scaling, where 1/ 2 1/ 2

1i i i i

− −
+ = ⋅ ⋅A D A D  and 

1

1 ,
T

i i i

−
+  = ⋅ A A D  respectively. An 

alternative method of generating a double stochastic matrix from a given matrix 

uses the graph complement, G , where  

 
( )

,
n

n V
n n

+ ⋅ − +′ = = =A I D A D
A , (3) 

= − −A J I A , and D  is the corresponding degree matrix of A  [13]. Although 

we do not use stochastic matrices, our research on them motivated us to use 1−D  

in ensuring that the matrix inverse exists to great effect. 
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The PageRank algorithm is given in Figure 5, where we first apply the stochastic 

perturbation, and compute the eigen decomposition. We assume the eigenvectors 

are ordered by the magnitude of their eigenvalues and extract the leading 

eigenvector, 
:,

.
n

U  We then concatenate the vertex positions with the leading 

eigenvector and sort lexicographically, and extract the vertex ordering, p. 

( )
( )

[ ]
[ ] [ ]( )

1

:,

:,2

  compute_ page_rank , ,

iso_perturb , ,

1,2, ,

lex_sort , 1

ord

n

T

ord

n

n

n

α
α

−

=
′ =

′⋅ Λ ⋅ =
=

=

=

=

function v A

A A

U U A

x U

n

S x n

v S

end

…
 

Figure 5. PageRank algorithm 

A MATLAB implementation is listed in Figure 6. Rounding on line 14 is due to 

the use of finite precision (the roundn function is in the mapping toolbox). The 

sortrows function performs lexicographic sorting on line 17. 

 

Figure 6. PageRank algorithm (MATLAB source code) 

1.  function [tA] = iso_perturb(A, n, a) 
2.   % compute degree matrix 
3.   D = diag(sum(xA)); 
4.   
5.   % compute transform 
6.   tA = a * D^(-1) * A + (1 - a) / n; 
7.  end 
8.   
9.  function [p] = compute_page_rank(A, n, a) 
10.   tA = iso_perturb (A, n, a); 
11.   
12.   % compute leading eigenvector 
13.   [U, V] = eig(tA); 
14.   x = roundn(U(:, n), -15); 
15.   
16.   % sort lexicographically 
17.   S = sortrows([x, [1:n]'], [1]); 
18.    
19.   % extract vertex ordering 
20.   p = S(:, 2); 
21.  end 
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3 Fundamental Constructs 
This section describes several key abstractions of PageRank that greatly aided 

IsoRank’s development. We recall we are interested in computing a canonical 

isomorph, .ωA  Thus, key idea is to apply the induced permutation yielded by a 

vertex ordering algorithm, such as PageRank, to the input adjacency matrix, A, 

as shown in Figure 7. The equivalent MATLAB source code is listed in Figure 8, 

where lines 3–5 are replaced with “Aomega = A(phi, phi); ” in practice. 

( )
( )

,

  = find_isomorph , ,

compute_page_rank , ,

( ,:)
n n

T

n a

n a

ω

ω

ω

ω ω ω

φ

φ

=

=

= ⋅ ⋅

function A A

A

P I

A P A P

end

 

Figure 7. Applying an induced pPermutation 

 

Figure 8. Applying an induced permutation (MATLAB source code) 

3.1 Information Matrices 
The PageRank algorithm computes only one eigenvector; this is primarily driven 

by the fact that the Perron-Frobenius theorem only guarantees the existence of a 

single eigenvector. Thus began our search for a more robust set of vectors that 

we refer to as an information matrix. The first information matrix we considered 

was the entire set of eigenvectors; however, they did not significantly improve 

our ability to find a canonical isomorph. Previous work has also considered such 

information matrices; the eigenvectors are a frequent candidate [6][13]. 

We conjectured an ideal information matrix would be unique up to isomorphism, 

i.e., ,
T T⋅ ⋅ ↔ ⋅ ⋅P A P P X P  where X is the desired information matrix. One such 

matrix is the all-pairs shortest path (APSP) distance matrix, which is obtainable 

in ( )3
nΟ  time. This led us to consider similar matrices computable in ( )3

nΟ  

time, most notably, the pseudoinverse, 
†
,A  and the matrix inverse, 

1
,

−
A  but 

several issues preclude the immediate use of either. First, the pseudoinverse, 

although it always exists and has been used in other algorithms for determining 

isomorphism [2], it may yield provide less than our goal of n information vectors 

and can numerically difficult to compute. The inverse may simply not exist; a 

key result of our work is how we perturb A such that 1−A  is guaranteed to exist.  

1.  function [Aomega] = find_iso(A, n, a) 
2.   phi = compute_page_rank(A, n, a); 
3.   I = eye(n); 
4.   Pomega = I(phi, :); 
5.   Aomega = Pomega * A * Pomega'; 
6.  end 
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3.2 Isomorphism-Preserving Perturbations 
A graph perturbation (matrix perturbation), induces changes on the underlying 

graph (matrix), e.g., by adding random edges between arbitrary vertices. If  

1 2
,G G≅  an isomorphism-preserving perturbation yields 

1 2
,G G′ ′≅  where G′  is 

a perturbed graph (matrix), e.g., adding a loop to all vertices. Such a perturbation 

should increase computing efficiency, increase our ability to find ,ωA  decrease 

the condition number, ( ) ,κ A  and be invertible, i.e., G is obtainable from .G′  

We use isomorphism-preserving perturbations to ensure the information matrix 

of interest, ( ) 1
,

−′A  exists, where ′A  is obtained by perturbing A. 

3.2.1 Distinguishing Graphs by Vertex Augmentation 
A simple isomorphism-preserving perturbation for ensuring connectivity is to 

add a vertex to the graph, which we call the β-vertex,  and an edge between this 

vertex and all existing vertices. This perturbation appears in many contexts and 

has been shown to aid distinguishing the eigenvalues of non-isomorphic graphs, 

however, it does not serve as a complete invariant [20], Section 4.5.5 in [6]. We 

observed a similar effect—even for connected graphs, adding a single vertex 

linked to all vertices improves our ability to find a canonical isomorph. One 

effect of adding vβ  is that it forces the diameter to be either one or two. Thus, 

we have ( ), ,G V Eβ β β=  where { }V V vβ β= ∪  and { }{ }, , .
i i

E E v v v Vβ β= ∪ ∀ ∈  

Therefore, ( ) ( ) 1 1n V G V G nβ β β= = + = + , and ( ) ( ) ( ) .E G E G V Gβ β = +  

This perturbation is akin to adding a ‘1’s column to ensure a y-intercept, i.e., 
0
,β  

in linear regression, hence are dubbing this as the � -vertex perturbation (4). 

 
1,1 1,

,1

n

nβ
 

′ = =  
 

0 1
A A

1 A
 (4) 

3.2.2 Ensuring Invertibility by Diagonal Dominance 

The pseudoinverse, ( ) 1
†

,
T T

−
= ⋅ ⋅A A A A  is often used in linear regression, 

always exists; furthermore, † 1−=A A  (if 1−A  exists). To ensure 1−A  exists, 

where 
1

,
−⋅ =A A I  we apply an isomorphism-preserving perturbation based on 

spectral graph theory [3], where the Laplacian, ,= −L D A  is often studied and 

D is the degree matrix of A. We are interested in the signless Laplacian [12], 

.+ = +L D A  It is known either Laplacian is positive semi-definite, i.e., they do 

not always have an inverse. We propose the modified signless Laplacian, of the 

form ,
ε ε+ = + + ⋅L D A I

�
 where ε�  is a vector of constants. We initially focused 

on ,
ε+ = + +L D A I  however, 1ε+ −= + +L D A D  yields the best results. Since 

ε+L  is diagonally dominant, it is positive definite and invertible! 
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3.3 Potential Equivalent Vertex Grouping 
A key reason for using the inverse as the source of our information matrix, X, is 

it can group potentially equivalent vertices, i.e., since 1 .T T−⋅ ⋅ ↔ ⋅ ⋅P A P P A P  

This is based on two ideas: first, the inverse of a matrix is unique up to 

isomorphism and second, within each row (column) the sorted entries of that row 

(column) are unique. Namely, two vertices that are in the same orbit must share 

identical entries in their corresponding rows (columns) of the inverse. Since the 

inverse of a matrix has n vectors, the sorting of each vector within the inverse is 

computable in ( )2
logn nΟ ⋅  time, if we assume that the sorting is done by an 

implementation of quicksort, e.g, as in MATLAB’s sort function. 

3.4 Lexicographic Sorting 
We previously introduced lexicographic sorting in the context of the MCI, e.g., 

we recall the MCI of “logarithm” is the sorted string “aghilmort”. We assume we 

have obtained an information matrix, X, from the inverse, ( ) 1
,

−′A  of a perturbed 

matrix, ′A , based on the adjacency matrix, A, of a graph, G, i.e., X is unique up 

to isomorphism. For instance, if Table 3(a) is X, sorting each row from left to 

right, as shown in Table 3(b), reveals vertices {a, c} may be in the same orbit, 

since they both share entries [ ]3,3,7,7 .  Lexicographically sorting on Table 3(b) 

augmented with the identity vector, [ ]1, 2, , ,nφ = …  yields Table 3(c) along with 

an induced permutation on the identity vector, φ. 

Table 3. Individual row and lexicographic sorting of an information matrix 

(a) Raw matrix (b) Row sorting (L � R) (c) Lexicographic sorting 

 r s t u 

r 7 5 3 7 

s 5 9 5 3 

t 3 5 7 7 

u 7 3 7 3  

 r s t u φ 

r 3 5 7 7 1 

s 3 5 5 9 2 

t 3 5 7 7 3 

u 3 3 7 7 4  

 r s t u φ 

u 3 3 7 7 4 

s 3 5 5 9 2 

t 3 5 7 7 3 

r 3 5 7 7 1  

The MATLAB sortrows function lexicographically sorts a matrix by rows and 

allows us to specify the columns to sort on and uses the same quicksort 

implementation as the sort function. The underlying quicksort implementation is 

stable, i.e., two equal elements retain their original relative positions after being 

s Assuming pair-wise comparisons are used, the quicksort algorithm’s 

complexity is ( )logn nΘ ⋅  in the worst case to sort arbitrary data. If we assume n 

columns are sorted on and that a complete pair of rows may be swapped during a 

comparison, i.e., that this is a non-pointer based implementation, then sorting 

lexicographically via quicksort, i.e., sortrows, is ( )3
log .n nΟ ⋅  Some efficiency 

can be gained via by using the underlying sortrowsc function, which only returns 

the induced permutation versus the lexicographically sorted n n×  matrix. 
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3.5 Iterative Ranking 
For a variety of reasons, e.g., numerical conditioning, we considered iteration to 

further improve performance. Loosely stated, if computing the inverse, sorting 

lexicographically on it, and applying the induced permutation are effective once, 

are more iterations beneficial? One question is how much iteration is useful? A 

series of permutations creates a permutation chain, 
2 1

,
mω = ⋅ ⋅ ⋅P P P P⋯  where 

 
1 2

1 2

m
T

mω ω ω= ⋅ ⋅ = → → →
P P P

A P A P A A A⋯  (5) 

and 
1i i+→A A  denotes 

1
.T

i i i i+ = ⋅ ⋅A P A P  If we obtain 
i

P  randomly, ωA  is 

determined by a random process. However, by computing 
i

P  deterministically, 

we can, for some k and some m, decompose the permutation chain via 

 
1 1 1 1 11

1 1 1

limit sequence limit cycle cycling!

k k k m m k

k k m kω

− + − + +

+ += → → → → → → →
P P P PP PP

A A A A A A⋯ ⋯ ⋯
������������� �������������� �����������

, (6) 

where a limit cycle is the permutation sequence, that after being deterministically 

reached, e.g., by lexicographic sorting, repeats and a limit sequence is the set of 

permutations traversed to reach a limit cycle. By using a limit cycle’s MCI as its 

terminal isomorph (attractor), ,ωA  we have an attractor set, 

{ }
1 2
, , .ω ωΩ =A A A …  For an iterative approach to be useful,  the limit sequences 

(cycles) must be short and the attractor set must be small, i.e., !.nΩA ≪  

4 IsoRank: Ordering Vertices on the Matrix Inverse 
The IsoRank algorithm is presented in Figure 9. Broadly stated, the algorithm 

applies isomorphism-preserving perturbations to the adjacency matrix, computes 

the inverse of the perturbed matrix, lexicographically sorts on the information 

matrix yielded by the inverse, and applies the induced permutation to the input 

adjacency matrix. The most expensive computations are obtaining the inverse 

and sorting lexicographically, which are ( )3
nΟ  and ( )3 log ,n nΟ ⋅  respectively.  

This process may iterate for as many as ( )
2log 1 1n + +   iterations and we track 

two previous iterations; reasons for this are presented in our results discussion. 

Thus, the IsoRank algorithm executes in ( )3 2logn nΟ ⋅  time, if using numerical 

libraries, e.g., those used in MATLAB. As will be discussed, this complexity can 

be reduced significantly by a rather large factor with a more efficient design. 

Perhaps the most critical step of the algorithm is shown on lines 14–15, where 

we round entries of the inverse we have obtained. Since we are using finite 

precision, and since we are sorting on these entries, it is critical that theoretically 

identical entries are also numerically identical. Although rounding handles many 

numerical problems we encounter, this step is an active area of our research. 
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Figure 9. The IsoRank algorithm 

1. ( ) A compute_iso_rank , ,n tω =function A  

2.  1n nβ = +  

3.  
_ _ 2 _ _1old oldω ω ω= = =A A A A  

4.  // iterate based on base-2 logarithm relative to size of vertex set 

5.  ( )( )2
1 log 1i nβ= +  for to do  

6.   // add beta vertex  

7.    
1,1 1,

,1

n

nβ
ω

 
=  
 

0 1
A

1 A
 

8.   // form modified signless Laplacian to ensure inverse exists 

9.    
1ε

β β β β
+ −= + +A A D D  

10.   // compute source of information matrix, i.e., the inverse 

11.    ( ) 1ε
β β

−+=S A  

12.   // remove corresponding row, but not column, of beta vertex 

13.    ( )2 : , :nβ β β′ =S S  

14.   // round entries before sorting due to finite precision 

15.    ( )round , tβ β′=T S  

16.   // sort individual rows of source information matrix 

17.    ( )sort_row_vectorsβ β′ =T T  

18.   // construct information matrix (row-sorted + raw inverse) 

19.    
,n n

β β β′ =  X T T I  

20.   // sort information matrix lexicographically 

21.    ( )( )sort_cols_lexically , 1: 2 nβ β β′ = ⋅  X X  

22.   // extract induced permutation matrix 

23.    ( ) ( )( ):, 2 1 : 2n n nω ω β β= ⋅ + ⋅ +P X  

24.   // permute adjacency matrix 

25.    T

ω ω ω ω= ⋅ ⋅A P A P  

26.   // check for limit cycle lengths {1,2}, i.e., terminal isomorph 

27.    ( )_ _1 _ _ 2 break( )old old iω ω ω ω≡ ∨ ≡if A A A A end  

28.    
_ _ 2 _ _1old oldω ω=A A  

29.    
_ _1oldω ω=A A  

30.  end  

31. end  
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5 Implementation Optimization  

The IsoRank algorithm is ( )3 2
logn nΟ ⋅  if implemented using numerical linear 

algebra libraries. A variety of improvements reduce complexity by a large factor. 

5.1 Faster Permutations and Inversions 
Given an orthogonal matrix, e.g., a permutation matrix, ,P  its inverse is defined 

by 
1

;
T− =P P  this reduces computing 1−P  from ( )3

nΟ  to ( ).nΟ  Thus, we can 

obtain a permutation, 
1
,

−⋅ ⋅P A P  by T⋅ ⋅P A P  and again, since P  is sparse, 

reduce this complexity from ( )3
nΟ  to ( )2

.nΟ  Furthermore, we can augment 

the information matrix with the identity matrix, I, versus an identity vector, 

[ ]1, 2, , ,
T

n=n …  reducing the size of the matrix being sorted on by a factor of n. 

Perhaps most significantly, since permuting a matrix permutes its inverse, i.e., 
1

1 1 1
,

−− − − ⋅ ⋅ = ⋅ ⋅ P A P P A P  by the last result, we only need to compute 
1

β
−′  A  

and permute it after each of the first ( )2log 1n +    iterations. Furthermore, since 

β′A  is positive definite, we can use Cholesky decomposition to obtain 
1

β
−′  A  at 

an approximate cost of ( ) 3
1 6f n n= ⋅  [7]. Finally, we know that ,D  the degree 

matrix, is a diagonal matrix, and thus we only need to reciprocate its n diagonal 

entries to obtain 
1
,

−
D  reducing this computation from ( )3

nΟ  to ( ).nΟ  

5.2 Implementation-Specific Issues 
There are several implementation issues to consider in MATLAB, the following 

ones have yielded the most significant improvement: using vectors in lieu of for 

loops, calling the sortrowsc function versus sortrows, using sparse matrices if 

applicable, and using linsolve if operating on dense matrices. We currently use 

the β-vertex perturbation to process graphs with multiple components—this can 

be significantly improved by pre-processing the graph to separate components. 

5.3 Leveraging Parallel Libraries 
We have scaled up to 8 processors using the Intel BLAS libraries provided with 

MATLAB. These libraries are accessed by setting the “BLAS_VERSION” and 

“OMP_NUM_THREADS” environment variables to specify the BLAS library 

and number of CPUs, e.g., “mkl_p4.dll” and “2”, respectively. 

5.4 Using Symbolic Libraries 
A different type of performance issue arises from the use of finite precision. We 

have used three symbolic libraries: the Maple engine in the symbolic toolbox, 

Mathematica, and the Gnu Multiple Precision (MP) library. The use of symbolic 

libraries particularly benefits from the suggestions in Section 5.1. 
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6 Results 
To evaluate these ideas, we constructed 1,024 x {16, 64}-vertex random graphs 

using ( )Pr 0.5
i

e =  and ( ) [ ]Pr 1 ,1
i

e n∈  along with two isomorphs of each test 

graph. Each entry in the tables below reflect the number of pairs successfully 

identified, i.e., ideally, 1024 pairs. These are small, easy graphs; we observe 

similar results on various regular graphs, e.g., ladders and Mobiüs ladders, 

random regular graphs, and Paley graphs [9]. In addition, we have tested variants 

of IsoRank on dense (sparse) graphs having many as 4,000 (40,000) vertices. 

6.1 Eiegenvectors (one iteration) 
Table 4 shows sorting on a single eigenvector, as in PageRank, finds a canonical 

isomorph for ~50% of the graph pairs. Although overall performance decreases 

if ( ) [ ]Pr 1 ,1 ,
i

e n∈  sorting on all eigenvectors has a slight very advantage. This 

experiment did not apply the β-vertex or signless Laplacian perturbation. 

Table 4. One versus All Eigenvectors (1 iteration) 

Pr(ei ∈∈∈∈ E) 0.5 [1/n, 1] 

Number of Vertices 16 64 16 64 

One eigenvector 509 515 483 498 

All eigenvectors 509 515 506 502 

6.2 Eiegenvectors ( ( )2log 1 1n + +   iterations) 

Iterating by as many as ( )2
log 1n +  iterations improves the chances of finding a 

canonical isomorph from ~50% to ~75%, as shown in Table 5. This experiment 

also did not leverage the β-vertex or signless Laplacian perturbation. 

Table 5. One versus All Eigenvectors ( ( )2log 1 1n + +   iterations) 

Pr(ei ∈∈∈∈ E) 0.5 [1/n, 1] 

Number of Vertices 16 64 16 64 

One eigenvector 766 763 728 749 

All eigenvectors 766 763 778 766 

6.3 Using the Inverse and Pseudoinverse 
Table 6 reveals sorting on either the pseudoinverse or the inverse dramatically 

improve performance. We use the β-vertex perturbation to obtain the inverse and 

the pseudoinverse; we used the signless Laplacian when obtaining the inverse, 

but not the pseudoinverse. We see IsoRank correctly determines isomorphism, 

using the inverse for all 1,024 random test pairs. 

Table 6. A
†
 versus A

-1
, 
�

-vertex, w/iterations 

Pr(ei ∈∈∈∈ E) 0.5 [1/n, 1] 

Number of Vertices 16 64 16 64 

Pseudoinverse 917 1024 798 968 

Inverse 1024 1024 1024 1024 
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6.4 Timing  
We recall we are primarily interested in the resulting ranking. Thus, we have not 

compared our execution times (thus far) with nauty or additional algorithms that 

determine isomorphism. We provide a sample of our execution times using a 

reasonably efficient implementation in Table 7, where all times are in seconds. 

The experiments were conducted on an 8-way Intel Xeon machine operating at 

3.00 GHz with 3.00 GB of RAM. The graphs were all dense random graphs of 

50% edge density, i.e., ( )Pr 0.5.
i

e =  We generated 100 test pairs for 

{ }1,2,4,8,16,32,64,128,256n =  and 10 pairs for 256.n >  This is not a rigorous 

analysis; it is simply intended to provide an idea of IsoRank’s execution time. 

All times are for computing/comparing canonical isomorphs of two input graphs. 

Table 7. Average Execution Times on Random Graphs, ( )Pr 0.5
i

e =  

(time in seconds to compute and compare ωA  given two random isomorphs) 

 Number of CPUs for BLAS Libraries 

n V=  1 2 4 8 

1 0.0016 0.0017 0.0020 0.0016 

2 0.0022 0.0023 0.0023 0.0015 

4 0.0023 0.0023 0.0023 0.0016 

8 0.0022 0.0022 0.0023 0.0015 

16 0.0027 0.0030 0.0031 0.0032 

32 0.0053 0.0041 0.0042 0.0031 

64 0.0099 0.0112 0.0120 0.0109 

128 0.0330 0.0314 0.0327 0.0313 

256 0.1599 0.1467 0.1517 0.1470 

512 0.9062 0.7998 0.8002 0.7828 

1024 5.4764 4.6922 4.5957 4.3407 

2048 29.0875 24.6955 22.0735 20.0425 

4096 167.5541 124.8512 108.5633 99.1695 

6.5 Symbolic Testing and Iteration Limits 
We have tested IsoRank using symbolic libraries on graphs of up to eight 

vertices (12,598 unique graphs). By linking a symbolic library to IsoRank, we 

found the same canonical isomorph for all but seven of these graphs; adding the 

equivalent vertex grouping feature resolved this issue, i.e., IsoRank can 

determine isomorphism of graphs with eight or fewer vertices. Although for 

small graphs, this experiment aided in verifying IsoRank’s correctness. 

Omitted analysis reveals at most ( )2log 1 1n + +    iterations are present in a limit 

sequence and limit cycles are of length 1 or 2, including all tested “pathological” 

graphs, e.g., challenge graphs [15] and those based on Hadamard matrices [16]. 

The attractor set, unfortunately, can be quite large for pathological graphs. 
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7  Conclusions 
We present a polynomial-time algorithm for ranking the vertices of a graph in a 

numerically stable manner. In many instances, this ranking is also canonical, i.e., 

it can be used to determine graph isomorphism. If we assume the input graph is 

non-pathological, i.e., that it is not strongly regular, then the most critical issue 

affecting our results are the condition number, ( ),κ A  and the numerical stability 

of the algorithm computing 1.−A  We are researching ways to improve ( )κ A  by 

another isomorphism-preserving perturbation or using iterative solvers. For 

example, we some measurable differences in our results if we sort in ascending 

versus descending order. We are also exploring three areas beyond the impacts 

of numerical conditioning. 

The first area lies at the heart of our reason for tackling this problem: finding an 

efficient method of canonically ranking a large sensor network, containing many 

tens of thousands of nodes. To this end, we are exploring IsoRank’s behavior if 

we only sort on the vector associated with the � -vertex, versus computing the 

entire inverse. This immediately reduces the complexity by a factor of n, renders 

iterative methods for solving such a system more attractive, and when coupled 

with sparse matrices, enables us to tackle relatively large systems. i.e., we can 

test trees having 30,000 vertices (in under one second). 

The fundamental graph-theoretic issue we are exploring, assuming we calculate 

the entire inverse, are useful and correct methods to map IsoRank into more 

traditional approaches of determining graph isomorphism. The primary route we 

are considering is using the inverse of the propsed modified signless Laplacian 

as the selection method using a traditional backtracking approach. This aspect of 

the research also involves some work involving coloring nodes in a deterministic 

manner and (re)-computing the inverse based on this coloring. In particular, we 

are exploring how many colors are needed to ensure the inverse has unique rows. 

The last area we are studying is related to our original problem: linearizing a set 

of k-dimensional points by ranking vertices based on their 2-D distance matrix. 

This has implications related to data storage, logistics, and network security. We 

are at an early stage of this portion of the research and welcome any suggestions. 

We close by emphasizing the simplicity of the IsoRank algorithm: by adding a 

single vertex, ,vβ  linking it to all other existing vertices, adding the degree sum 

and its reciprocal to the diagonal of this new adjacency matrix, and applying up 

to ( )
2

log 1 1n + +  induced permutations, obtained by lexicographically sorting on 

the inverse of the perturbed matrix, the IsoRank algorithm ranks vertices in 

polynomial time, and often yields a canonical isomorph. 
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Appendix A 

We provide a basic MATLAB implementation of IsoRank in Figure 10. On 

line 24, we use "X = tA \ I" , which is more numerically stable and efficient 

than "X = tA^(-1)"  or "X = inv(tA)" . On line 25, we round 14 places 

to the right of the decimal; the roundn function is in the mapping toolbox. 

 

Figure 10. An  IsoRank Implementation (MATLAB) 

1.  function [oA] = compute_iso_rank(A, n) 
2.   oA = A; 
3.   % perform iterations 
4.   iters = ceil(log2(n + 1)) + 1; 
5.   for i = 1:iters 
6.    % compute & apply permutation 
7.    pA = compute_iso_perm(oA, n); 
8.    oA = oA(pA, pA); 
9.   end 
10.end 
11. 
12.function [pA] = compute_iso_perm(A, n) 
13. % add beta vertex 
14. j = ones(n, 1); 
15. bA = [0, j'; j, A]; 
16. 
17. % force A^(-1) to exist (SDDD) 
18. d = sum(bA); 
19. tA = bA + diag(d + 1./d); 
20. 
21. % compute info matrix, A^(-1) 
22. X = tA \ eye(n + 1); 
23. 
24. % round information matrix 
25. X = roundn(X, -14); 
26. 
27. % sort rows of info matrix  
28. T = sort(X, 2); 
29. 
30. % prepare lexicographic sort 
31. augX = [T, X]; 
32. nC = 2 * (n + 1); 
33. [S, pA] = sortrows(augX, [1:nC]); 
34.  
35. % remove beta vertex permutation entry 
36. iBeta = find(pA(:, 1) == 1); 
37. pA(iBeta, :) = []; 
38. pA = pA – 1; 
39.end 
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Appendix B 

This appendix applies the IsoRank algorithm to the “house” graph in Figure 1(a). 

We first observe that 5, 6,V E= =  and ( ) 1.Gκ =  By inspection, we also see 

that ( ) ( ) { }, ,orb a orb c a c= =  ( ) ( ) { }, ,orb b orb d b d= =  and ( ) { };orb e e=  

vertex labels are used only for convenience. Figure 1(b) shows the result of 

applying the β-vertex and modified signless Laplacian isomorphism-preserving 

perturbations. The lighter dotted lines are the edges linking all vertices with .vβ  

The darker loops linked to a vertex are the result of the modified signless 

Laplacian; the weight is listed inside each loop, ( ) ( ) ( )deg 1 deg .
i i i

w v v v= +  

b

c d

a

e

b

c d

a

e

 

b

c d

a

eβ
1
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3

3
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3
+

14
4
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(a) Original (b) Perturbed (β-vertex / ε+L ) 

Figure 1. The “house” graph (original and perturbed) 

Table 8 lists the adjacency matrices corresponding with the graphs shown in 

Figure 1. The β-vertex perturbation adds a row and column, and the row 

(column) sums are placed on diagonal entries, by way of 
1
.

ε
β β β β
+ −= + +A A D D  

Table 8. Adjacency matrices of the “house” graph (original and perturbed) 

(a) Original  (b) Perturbed (β-vertex / ε+L ) 

 a b c d e   β a b c d e 

       β 
1

5
5  1 1 1 1 1 

a 0 1 1 0 0  a 1 
1

3
3  1 1 0 0 

b 1 0 0 1 1  b 1 1 
1

4
4  0 1 1 

c 1 0 0 1 0  c 1 1 0 
1

3
3  1 0 

d 0 1 1 0 1  d 1 0 1 1 
1

4
4  1 

e 0 1 0 1 0  e 1 0 1 0 1 
1

3
3  
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The symbolic inverse of the perturbed matrix from Table 8(b) is shown in 

Table 9. We only use the symbolic inverse here for illustration; it is computed 

numerically unless conducting experiments to assess the impact of conditioning 

i.e., of ( ).κ A  

Table 9. The inverse of the perturbed “house” graph 

 β a b c d e 

β 
11490

49853

2370

49853
−  1220

49853
− 2370

49853
− 1220

49853
−  2715

49853
−

a 
2370

49853
− 1488912

3938387
 382068

3938387
− 455355

3938387
− 216168

3938387
 1341

49853

b 
1220

49853
− 382068

3938387
−  1153772

3938387

216168

3938387

242112

3938387
−  3096

49853
−

c 
2370

49853
− 455355

3938387
−  216168

3938387

1488912

3938387

382068

3938387
−  1341

49853

d 
1220

49853
− 216168

3938387
 242112

3938387
− 382068

3938387
− 1153772

3938387
 3096

49853
−

e 
2715

49853
− 1341

49853
 3096

49853
− 1341

49853

3096

49853
−  17628

49853

We remove the row of the inverse belonging to the β-vertex; we could remove 

the permuted position of the β-vertex later; it is convenient to do so here. We 

typically round to 12–15 digits of precision, but use 3 digits in this example. 

Table 10. Removing the ββββ-vertex row and rounding 

 β a b c d e 

a -0.048   0.378  -0.097  -0.116   0.055   0.027  

b -0.024  -0.097   0.293   0.055  -0.061  -0.062  

c -0.048  -0.116   0.055   0.378  -0.097   0.027  

d -0.024   0.055  -0.061  -0.097   0.293  -0.062  

e -0.054   0.027  -0.062   0.027  -0.062   0.354  

Before sorting and to facilitate presentation, we map unique inverse values, 

[ ]0.116, 0.097, ,0.378− − …  to [ ]1,2, ,12 ,…  respectively, as shown in Table 11. 
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Table 11. Mapping entries to integers (presentation only) 

 β a b c d e 

a 6 12 2 1 9 8 

b 7 2 10 9 4 3 

c 6 1 9 12 2 8 

d 7 9 4 2 10 3 

e 5 8 3 8 3 11 

We now sort the individual rows of the mapped inverse to facilitate orbit 

grouping, as shown in Table 12. We see that entries are sorted from left to right 

within each row. To save space, we use the “Equal Rows” column in the 

remainder of this appendix. 

Table 12. Sorting entries within each row of the inverse 

 β a b c d e Equal Rows? 

a 1 2 6 8 9 12 a, c 

b 2 3 4 7 9 10 b, d 

c 1 2 6 8 9 12 a, c 

d 2 3 4 7 9 10 b, d 

e 3 3 5 8 8 11 e 

We construct an information matrix by concatenating the “Equal Rows” column 

of Table 12, Table 11, and the identity matrix, I, as shown in Table 13 

Table 13. Constructing the information matrix 

Mapped Inverse I 
 

Equal 

Rows? β a b c d e a b c d e 

a a, c 6 12 2 1 9 8 1 0 0 0 0 

b b, d 7 2 10 9 4 3 0 1 0 0 0 

c a, c 6 1 9 12 2 8 0 0 1 0 0 

d b, d 7 9 4 2 10 3 0 0 0 1 0 

e e 5 8 3 8 3 11  0 0 0 0 1 
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We now lexicographically sort the information matrix, the algorithm’s key step. 

The two equivalent vertex pairs appear equivalent with respect to their entries in 

the “Equal Rows” and β-vertex columns. The ties between { },a c  and { },b d  are 

resolved by sorting on column ‘a’, where entries involved in sorting are shaded. 

In this example, we thus do not need to sort on columns [ ], , ,b c d e . We observe 

sorting induces an ordering, i.e., a permutation, on the identity matrix, our 

primary objective. If we are using the quicksort algorithm, then in the worst case, 

if all columns had to be sorted, this step would terminate in ( )3 logn nΟ ⋅  time. 

Table 14. Sorting the information matrix lexicographically 

Mapped Inverse P 
 

Equal 

Rows? β a b c d e a b c d e 

a a, c 6 1 9 12 2 8 0  0 1 0 0 

b a, c 6 12 2 1 9 8 1 0 0 0 0 

c b, d 7 2 10 9 4 3 0  1 0 0 0 

d b, d 7 9 4 2 10 3 0  0 0 1 0 

e e 5 8 3 8 3 11  0 0 0 0 1 

We then extract the induced permutation and apply it to A, i.e., 

,T

ω = ⋅ ⋅A P A P  as shown in Table 15. 

Table 15. Permuting the adjacency matrix to obtain ωA  

P A P
T 

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 

1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 

0 0 0 1 0 0 1  0 1 0 0 0 1 0 

0 0 0 0 1 

× 

0 1 0 1 0 

× 

0 0 0 0 1 

The result of this permutation, ,ωA  is shown in Table 16. Further iteration 

yields the same isomorph, thus, we entered a limit cycle of length one on the first 

iteration, and the limit sequence required to find the limit cycle is of length zero. 

Since all isomorphs of the “house” graph yield the same terminal isomorph, there 

is only one terminal isomorph in the limit cycle set, i.e., { }.ωΩ =A A  Thus, we 

conclude IsoRank finds a canonical isomorph of the house graph, since 1.Ω =A  
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Table 16. The resulting canonical isomorph, ωA  

 c a b d e 

c 0 1 0 1 0 

a 1 0 1 0 0 

b 0 1 0 1 1 

d 1 0 1 0 1 

e 0 0 1 1 0 

 


