
A New Algorithm for Unkeyed Jam Resistance

Hamid Hanifi
University of Denver

Departement of Computer
Science

Denver, Colorado, USA.
hhanifi@du.edu

Leemon Baird
leemon@leemon.com

Ramakrishna Thurimella
University of Denver

Department of Computer
Science

Denver, Colorado
ramki@cs.du.edu

ABSTRACT
An important problem for secure communication is that of
achieving jam resistance, without any prior shared secret
between the sender and receiver, and without limits on the
assumed computational power of the attacker. To date, only
one system has been proposed for this, the BBC system,
which is based on coding theory using codes derived from
arbitrary hash functions. It is unfortunate that only one,
narrow solution has been found for this important problem.
We now propose a new algorithm for this problem: the HBT
algorithm. It is very different from BBC, using codes based
on monotone Boolean functions (MBF), rather than hash
functions. It is also more general. We show that despite
being very different from BBC, the latter can be viewed
as a special case of it. In fact, a theorem proves that all
such codes are special cases of this new system. We give
empirical results suggesting that this new approach is useful,
and describe directions for future research.

Keywords
Jam Resistance, Coding Theory, Wireless Communications,
Spread Spectrum

1. INTRODUCTION
Communication over noisy channels has been studied ex-

tensively. In modern communication, achieving jam resis-
tance is increasingly important, as attackers can easily ob-
tain inexpensive jamming devices on the open market. This
is specially critical in military applications as even a brief
denial of service attack can severely impact a vital opera-
tion. In the past, jam resistance has been achieved through
the use of spread spectrum techniques that involve a secret,
shared by the sender and receiver, but not by the attacker.
This secret might then define a chip sequence (for direct se-
quence spread spectrum) or a hop sequence (for frequency
hopping). Some common examples include[3, 5, 7].

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

SIN ’15, September 08 - 10, 2015, Sochi, Russian Federation
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-3453-2/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2799979.2800008

Concurrent codes were first proposed in [4] (and later in
[2]) as a means of achieving jam resistance without a shared
secret. Concurrent codes are superimposed codes that can
be decoded in polynomial time with high probability. That
is, if a packet is formed by taking either a single codeword or
the bitwise OR of several codewords, and it is then corrupted
by an attacker who changes several of the 0 bits to 1, then
there is an efficient algorithm that allows the receiver to
quickly find all of the codewords contained in that packet.
The advantage of this technique is that it does not require
a shared secret.

2. BACKGROUND
Spread spectrum techniques have been in use since the

1940s to achieve resistance to jamming, natural noise, and
eavesdropping. They can be based on direct sequence, fre-
quency hopping or pulse-based approaches. In these sys-
tems, it is often possible to achieve jam resistance, which
means the attacker must spend far more energy than the
sender, in order to prevent the receiver from receiving the
sent message.

The problem with traditional jam resistance techniques
is that they require some shared secret (or key) to achieve
jam resistance. This is an issue when we try to apply these
techniques to large scale applications like GPS, where the
intended ”users” are everyone on earth, and so include the
potential attackers. There is no way to protect GPS signals
using these techniques as these signals are meant to be pub-
lic. Even for private networks, if there are many devices that
must communicate in an ad hoc network, and if an attacker
might physically capture one of the devices, then using a
shared secret is problematic.

We need a system for omnidirectional radio communica-
tion that achieves jam resistance without any shared se-
cret, and without assuming any limit on the attacker’s com-
putation power. The only assumed limitation will be on
the amount of radio frequency power that the attacker can
broadcast (since broadcasting infinitely-powerful noise can
jam anything, but requires infinite energy). The BBC algo-
rithm [4][2] introduced the first algorithm for keyless jam
resistant communication. BBC uses superimposed codes,
which were introduced in 1964 by Kautz-Singleton [6]. A
superimposed code is defined to be a set of codewords such
that when a small number of codewords are combined using
a bitwise OR, the result (or packet) will include no codeword
other than those used to form the sum. The codes that were
proposed then were extremely inefficient, and impractical to
use for sending messages of reasonable length. The BBC

codes are a generalization of this called concurrent codes,
which are efficient (polynomial expected time and space to
encode and decode) and probabilistically correct. The prob-
abilistic correctness means that when several codewords are
ORed together, and several of the 0 bits are changed to 1
bits, then as long as the resulting packet does not have too
many 1 bits, the result of decoding will, with high probabil-
ity, contain all the original codewords that were combined,
plus only a small number of additional codewords. These ex-
tra codewords are called spurious codewords, and can then be
filtered out in a later step, using all the standard communi-
cation techniques, such as checksums, cryptographic hashes,
or digital signatures. For example, if a message is received
with an incorrect checksum or digital signature, then it can
be discarded.

When a receiver receives all messages sent by various senders,
the receiver can recognize messages intended for that re-
ceiver by looking at the TO address field, can recognize dam-
aged messages by using checksums, and can recognize forged
messages by using signatures. If there are several spurious
messages, then they are discarded on the bases of TO fields,
checksums, or signatures. So spurious messages are not a
problem unless the attacker is able to send a large num-
ber of them. In a good jam resistance system, that should
require a very large amount of broadcast energy.

BBC was the first concurrent code. Our new HBT al-
gorithm is the second concurrent code that can be used to
accomplish keyless jam resistant communication. We use
monotone Boolean functions (MBF) and more specifically,
monotone Boolean circuits (MBC), to encode and decode
messages. We will show that this is an alternative to BBC al-
gorithm for jam resistance communication without a shared
secret.

A codeword is a fixed-length binary string, and a code-
book is a set of such strings. The HBT algorithm defines a
codebook associated with every monotone Boolean function
(MBF). An MBF is any function f : {0, 1}n → {0, 1} such
that:

∀x, y ∈ {0, 1}n : f(x) ≤ f(x ∨ y)

In other words, an MBF is boolean, because the inputs are
bits and the output is a single bit, and it is monotone because
changing any single input from 0 to 1 will either leave the
output unchanged, or will change it from 0 to 1 (never from
1 to 0). The HBT algorithm requires that the MBF can be
evaluated in polynomial time, and defines the codebook to be
the set of all minimal true vectors (MTV) for that MBF. An
MTV is a binary string that when used as input to the MBF
makes it output 1 (true), but where changing any single 1
bit to 0 will cause the output to change to 0 (false).

With this definition, any choice of MBF will define a code-
book. And it is easy to create new MBFs. For example, any
feedforward circuit consisting only of AND and OR gates
will constitute an MBF.

However, not all MBFs will form a useful concurrent code.
For example, if most codewords have a large number of 1
bits, then ORing together even a small number of them could
result in a packet of all 1s, which would then decode as
containing every codeword in the entire codebook! So, to be
useful, the codewords will need to be sparse, or low density,
containing mostly 0 bits and only a few 1 bits.

On the other hand, if the average codeword density is too
low, then there won’t be enough codewords to convey very

HBT$Algorithm$ Example$

Message&

Codeword&

Sent&packet&

Received&packet&

Codewords&

Messages&

Message$encode$

Transmit$through$OR$channel$

A;acker$sets$some$bits$to1

Packet$decode$

Codeword$decode$

010

10111010 00011110 01110110

10111010 00011110 01110110

10111010 11111111 01110110

10111010 00011110 01110110

010

-------- 11111111 --------

Figure 1: The HBT algorithm with three sub algo-
rithms (message encode, packet decode, codeword
decode)

much information. For example, if the packets are n bits
long, and each codeword has only a single 1 bit, then there
can be at most n codewords, which is far smaller than the
21000 codewords that would be needed if we want a single
codeword to communicate a 1000-bit message. This same
problem would arise if the codeword density were good, but
the number of codewords in the codebook was too small.
There is no simple way to look at a family of circuits and
guess how large the codebook will be, without testing it
empirically.

Furthermore, the codebook will give excessive spurious
messages during decoding if it contains certain patterns and
is “non-random” is certain ways. For example, suppose all
of the codewords are very similar (separated by low Ham-
ming weight). Then it is likely that the bitwise OR of two
codewords will give too many spurious messages, because
one codeword can be converted into another by setting only
a few bits to 1. It is not at all obvious how “random” the
codebook will be for a given MBF or MBC, until it is tested
empirically. So we have searched through many types of cir-
cuits to find a family of MBCs that implement MBFs which
define codebooks that avoid these three problems (too dense
or sparse, too many or too few codewords, too“non-random”
in the sense of generating too many spurious codewords dur-
ing decoding). The results in this paper give the first circuit
families that were found that give promising results in these
areas.

Of course, even if the MBF defines a useful codebook, it
may not be obvious how to use that MBF to send and receive
messages. That can be done using the HBT algorithm.

3. THE HBT ALGORITHM
The HBT algorithm is shown in figure 1. This main algo-

rithm is composed of three sub algorithms that are described
later: message encoding (Algorithm 2), packet decoding (Al-
gorithm 1), and codeword decoding (figure 4).

The sender encodes the message to get a codeword, which
is sent over an OR channel. An OR channel is a communi-
cation channel for bits, where usually, a 0 is received if every
sender is sending a 0, and a 1 is received otherwise. In such

a channel, it is much easier for an attacker to change a 0 to
a 1 than to change a 1 to a zero. An example is given in [1],
based on Golay chip sequences. Some cell phone systems
currently achieve initial synchronization by broadcasting a
pseudorandom chip sequence called a Golay sequence, for
which it is particularly easy to build matched filters. This
means that a receiver can easily detect that the sequence
was sent, and when it was sent, without any initial synchro-
nization. The sequence is spread spectrum, and therefore
resistant to noise. It is unmodulated: it contains no infor-
mation other than the time at which it started. So it can
be thought of as transmitting a sequence of all zeros, with
a single 1 denoting its start. If two such sequences are sent
simultaneously, but with starts slightly offset in time, then
the receiver will receive two times, rather than one, and will
”see” a sequence of 0 bits with just two 1 bits. By super-
imposing multiple such sequences, it is possible to send a
string of 0 bits with an number of 1 bits. It is very easy for
an attacker to change a 0 to a 1: simply broadcast one more
copy of the sequence, starting at the appropriate time. But
it is very difficult for the attacker to change a 1 to a 0. That
would require erasing the fact that a chip sequence was sent
at all. Therefore, this constitutes an OR channel.

The bit stream received by the receiver is called a packet.
It contains the codeword that was sent. If several codewords
were sent simultaneously, then the packet would contain the
bitwise OR of those codewords. And if an attacker was
trying to jam communication, it would have some number of
its 0 bits changed to 1. The receiver then finds the complete
set of codewords that are contained in that packet, using
Algorithm 1. Then, for each codeword, the receiver converts
it to a message using the approach shown in figure 4. If
multiple messages are sent simultaneously, by a combination
of multiple senders and attackers and natural noise, then the
receiver finds the desired messages using some combination
of address, checksums, and signatures, as described above.

4. FINDING A GOOD MBF
It is not obvious how to find a good MBF that will al-

low long messages to be sent, while generating few spurious
messages for the receiver. It needs to have the properties
already mentioned: a good density of 1 bits, a good num-
ber of codewords, and a sufficiently random distribution of
codewords.

We explored a huge number of different families of AND/OR
circuits (MBCs) over the course of several years before find-
ing the family shown in this paper. When random circuits
are generated from this family, we find that the codewords
have good densities, and that we are able to encode messages
of reasonable length, and that it gives few enough spurious
messages that we are able to quickly check them all for the
desired messages.

An example circuit in this family is shown in Figure 2,
and the best parameters for various input sizes are shown in
Figure 5.

For this family, a circuit of n inputs will have n gates in
each layer, with a single gate in the output layer. Gates
in one layer are connected to gates in the preceding and
following layers. The output gate is an AND gate, and it
alternate OR and AND gates in the preceding layers. In a
given layer, all gates are the same type, and all have the
same number of inputs and the same number of outputs.
The behavior is critically dependent on the number of inputs

Figure 2: An MBC with n=4 inputs, m=3 layers

and outputs for each layer, and the best numbers for these
circuit sizes are given in Figure 5.

5. CIRCUIT GENERATION
The encoding process includes finding a circuit to create

a codebook and then use the codewords from the codebook
to create packets by doing bitwise OR on the codewords.
Each codeword represents a message. BBC suggests to have
packets with no more than 1/3 of the bits set to 1. We try to
maintain the same packet density to be able to compare the
results with BBC. Also keeping the packet density below 1/3
increases the chance that we would be able to recover the
messages at the receiving side despite the jamming attempts
by the attackers. As a result, the ideal number of 1s in the
codewords should be much less that 1/3 in order to be able
to OR the codewords together and create packets with less
than 1/3 of bits set to 1.

Defining the circuit includes defining number of rows, lay-
ers (columns) and the connection matrix. The connection
matrix is populated using the transposing matrix algorithm
explained below:

5.1 Generating a connection matrix
If two adjacent layers have n gates each, we generate an

n by n connection matrix, that has k bits set to 1 in each
row and each column. This ensures that all gates in the
first layer have the same number of outputs, and all gates
in the second layer have the same number of inputs. We
generate the circuit randomly, subject to this constraint.
We found empirically that the behavior is the same every
time we generate a new random connection matrix, for any
given choice of n and k in all the layers.

To generate an n by n matrix that is all zeros with k
1 elements in each row and column, we first generate each
column, as k 1 bits followed by n − k 0 bits. Then ran-
domly permute each column independently, using a stan-
dard Durstenfeld shuffle as described by Knuth (i.e., swap
each element with itself or an earlier element). Then search
from the top row downward, to find the uppermost row with
more than k 1 bits and the uppermost row with fewer. Then
search from left to right until a column is found where the
too-few row has a 0 and the too-many row has a 1. Swap
those two elements. Repeat until all rows have the same
number of 1 bits, which will then give the desired pattern.

For a given number of circuit inputs n, it is necessary
to find an appropriate choice of k in between each pair of
adjacent layers (where the k for one pair can differ from the
k for another pair). This is done by randomly generating
circuits with various combinations of choices, and trying the
HBT algorithm on random messages to evaluate how well it

works. We found that for these families, the search can use
gradient descent, because the error function is smooth.

6. FINDING THE CODE BOOK
The HBT packet decoding algorithm (Algorithm 1) is

equivalent to the Universal Concurrent Code algorithm in-
troduced in BBC [4] to find codewords in a packet. The
algorithm describes the process to find a single codeword in
a packet, by visiting the bits in a random order, setting each
to 0, and resetting it back to 1 if setting it to 0 makes the
output become 0. This probabilistic function returns one
codeword from the n-bit packet P. All the codewords can
be found by calling it repeatedly until it starts returning
only repeats of previously-found codewords. The returned
codeword will be an element of the codebook defined by the
polynomial-time monotonic Boolean function f. This runs
in linear time (plus the time for n calls to evaluate f). Every
codeword in the packet has a nonzero probability of being
returned, and all other bit vectors have zero probability.

In order to find all the codewords in a codebook, or a
random subset of them, we simply decode a packet of all 1
bits, repeatedly. Because the algorithm visits the bits in a
random order, it will be the case that each time the all-ones
packet is decoded, the result will be a random codeword
from the codebook.

Algorithm 1 HBT Packet Decoding Algorithm

Input: Monotone Boolean function f, n-bit packet P
Output: A codeword if the packet contains any.
if f(P) = 0 then

return The packet contains no codewords
end if
M ← P
L← the list 1, 2, ..., n in a randomly-permuted order
for i = 1→ n do

M [L[i]]← 0
if f(m) = 0 then

M [L[i]]← 1
end if

end for
return M

The total number of codewords in a small codebook can be
counted by generating random codewords from it repeatedly,
until most of the generated codewords are ones that have
already been seen. But this is impractically slow for large
codebooks. So we need a way to estimate the codebook size
for a given MBF. One way is to estimate it from the critical
density. This is defined to be a real number d in the range
(0, 1), such that when each input bit to the MBF is set to 1
with probability d, then the output will be 1 with probability
1/2. Given this definition, we can estimate the size of a
codebook by measuring d for a circuit, and the estimate will
be good if the implied codebook looks sufficiently random.
This result is given in Theorem 1.

Theorem 1. If a random codebook has N codewords of n
bits each, with each having a bits set to 1 and the rest set
to 0, and a critical density of d, then the following equation
will hold:

1− (1− N

C(n, a)
)C(dn,a) =

1

2

Proof. There are C(n, a) possible n-bit strings with a of the
bits set to 1, where C is the binomial function “n choose a”.
Only a fraction N/C(n, a) of such strings are actual code-
words, so a fraction 1−N/C(n, a) of them are not codewords.
If an input packet is created with the critical density, then
there will be dn bits in it set to 1, and so C(dn, a) potential
codewords (strings with a bits set to 1) contained within
that packet. The probability that all of them are outside
the codebook is (1 − N/C(n, a)) to the power of C(dn, a).
And so the probability of at least one of them being in the
codebook is 1 minus that. That final probability must be
1/2, by the definition of “critical density”. Therefore the
equation shown is correct.

7. MESSAGE ENCODING AND CODEWORD
DECODING

Once all the codewords in a received packet have been
found, it is necessary to convert each one to a message. This
is done using the HBT Codeword Decoding algorithm (figure
4). The codeword is broken into equal-sized sections, each of
which converts to one bit of the message. Within a section,
the Hamming weight (number of 1 bits) is found for each
half of the section, and the section is consider to represent
a 0 if the first half has greater weight, or a 1 if the second
half has greater weight (or the weights are equal). Figure 4
shows an example of the decoding algorithm in action. The
table on the top show association of messages to codewords.
The left section of the table lists 3-bit messages ready to
be encoded into codewords. The right section of the table
shows the codewords resulting from algorithm.

Given this method for converting a codeword to a mes-
sage, how can we go the opposite direction, and convert a
message to a codeword? That is shown in Algorithm 2. It
works by starting with the all-ones packet, and decoding it
to find a single codeword. However, the bits are not visited
in a completely random order. Instead, it first visits the
half of each section that is meant to be lighter (i.e., fewer 1
bits). Then it visits all the light halves again, and repeats
this until it has visited every bit in the light halves. Then it
visits the heavy half bits in a random order. Finally, check
the resulting codeword to see if it successfully encodes the
desired message. If it does not, try again.

This actually works correctly and quickly, if the codebook
has about 2k sparse codewords, and the message has at most
k bits. That is because we can usually choose about k of
the bits to be zero, before we reach the point that there is
exactly one codeword in the codebook that matches those
constraints. So the first k bits we visit will be set to zero,
and the rest will seem to be randomly generated, giving the
average density. If the light halves are chosen first, then
there will be guaranteed zeros in the light halves, and so
with high probability all the message bits will be correct.

This behavior is shown in figure 3. We define the density
curve to be the expected number of 1 bits generated in the
first t steps, versus t (t ≤ n), which is the left graph. We
can also numerically take the slope of this curve, which is
the probability that a visited bit will be 1 vs. the order
in which that bit was visited (right graph). So these two
graphs give insight into why the algorithm works.

We define the density curve to be the expected number of
1 bits generated in the first t steps, versus t (t ≤ n). For a
perfect circuit density curve looks like figure 3.

Algorithm 2 HBT Message Encoding Algorithm

Algorithm

Input: Message M[k], a MBF
Output: A codeword that encodes message M
L[k]← length of each of k group
for i = 1→ k do

//try to set the desired-0 bits to 0
for 1→ L[i] do

if M[i] =1 then
visit the least significant half of bits in group i,

try to set the bits to 0
elseM[i]=0

visit the most significant half of bits in group i,
try to set the bits to 0

end if
end for
//Now set the desired-1 bits to 0
for 1→ L[i] do

if M[i] =0 then
visit the least significant half of bits in group i,

try to set the bits to 0
else M[i]=1

visit the most significant half of bits in group i,
try to set the bits to 0

end if
end for

end for
if (number of 1s in all desired-1 half-sections > number
of 1s in desired-0 half-sections) then

return codeword
end if

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

P
ro

b
ab

ili
ty

 o
f

C
ri

ti
ca

l b
it

Iteration

Figure 3: Density Curve (left) and bit probability
(right)

As we discussed before environmental noise or attackers
can add unwanted 1 bits to the packet, but changing 1 bits
to 0 bits is not possible as it is equivalent of removing en-
ergy from the medium. An attacker needs to consume a
considerable amount of energy in order to introduce enough
number of unwanted 1 bits in the packet to interfere with
the decoding process. This asynchrony is what makes us
capable of making our communication jam resistant. By in-
troducing unwanted 1 bits, an attacker might cause spurious
messages at the decoding side and but still cannot jam the
signal without being have to spend far more energy than
the sender. If the attacker jams all the bits in a section, the
receiver can always discover the original codeword in the
packet. Because of the jammed bits however, the decoding
process will generate spurious messages and the receiver can
employ digital signatures or other techniques to distinguish
genuine messages from spurious messages.

The new HBT algorithm solves the same problem as the

Message Codeword
0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0
0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1
0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1

0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0
0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1
0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1
0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0
1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1
1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0
1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1
1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1
1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1
1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0

0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0
first	section	encodes	"0" second	section	encodes	"1" third	section	encodes	"0"
desired-1 desired-0 desired-0 desired-1 desired-1 desired-0

Figure 4: HBT codeword decoding: converting a
given codeword to the corresponding message,

older BBC algorithm, using a very different approach. These
HBT codes are much more general, and actually include
BBC codes as a special case. In fact, it can be proved that
all possible concurrent codes are special cases of HBT codes,
as shown in Theorem 2.

Theorem 1. Given any concurrent code C, there exists an
HBT code with exactly the same set of codewords, for which
packets can be decoded with high probability in polynomial
expected time and space.

Proof. If C is any concurrent code (e.g., BBC, or perhaps
some concurrent code that will be discovered in the future),
then there must exist (by the definition of“concurrent code”)
an algorithm to find all the codewords in a packet with high
probability, in polynomial expected time and space. Define
a function f that, given such a packet, uses that algorithm
to find any codewords that are in a packet, and returns 1 if
there are any codewords, or 0 if there are none. The function
f is monotone, because changing a 0 to a 1 in the packet can
only add codewords, never delete any existing ones. And it
gives the correct answer with high probability in polynomial
expected time and space, because the underlying code is a
concurrent code. The minimal true vectors for f will be ex-
actly the codewords of the underlying concurrent code, and
will also be exactly the codewords for the HBT algorithm
using f . Therefore, the given concurrent code is also an
HBT code. And so, all concurrent codes are special cases of
HBT.

8. RESULTS
Tests were run for a large number of circuits. Each circuit

had n inputs, feeding into a layer of n AND gates, whose
outputs fed into a layer of n OR gates, whose outputs fed
into a single AND gate, whose output was the output of the
circuit. The layers were not fully connected. Each input
sent signals to only k1 of the first-layer AND gates, rather
than connecting to all n of them. And each first-layer AND
gate received signals from exactly k1 of the inputs. Similarly,
each first-layer AND gate’s output sent signals to k2 of the
second-layer OR gates, and each of those OR gates received
signals from k2 first-layer AND gates. The third layer was
a single AND gate, receiving inputs from all n of the OR
gates.

For each value of n, there were many possible choices for
the pair (k1, k2). For each choice, many circuits were ran-
domly generated, and the average density a was measured.
This was measured by randomly generating many circuits
of that size and shape, and averaging the density of several
random codewords from each circuit. A pair (k1, k2) was
considered on the border if it gave a ≤ 1/9, and if it was
possible to make a > 1/9 by adding or subtracting 1 from
either k1 or k2.

For each pair on the border, the rate of spurious decod-
ings, s, was measured. This was done by generating three
random codewords, combining them with a bitwise OR, then
decoding the result 50 times, and counting how many dis-
tinct codewords were found beyond the original three. For
each choice of n, the (k1, k2) pair with the lowest s was con-
sidered to be the best.

Figure 5 shows the best (k1, k2) for each input size that
is a power of two, from n = 64 to n = 4096. In each case,
the measured a, d, and s, is shown, along with the log of
the codebook size N , as estimated by the equation in the-
orem 1. Below the table are five equations for estimating
those values, which were found by fitting functions to the
numbers in the table. It appears that these give fairly good
predictions, especially for the larger circuits, and so might
be expected to be roughly correct for even larger circuits.

These results suggest that for this family of circuits, the
best circuit is one where each AND gate in the first layer
receives input from about 5% of the inputs, and each OR
gate in the second layer receives inputs from all but about
a square root of those AND gates. This size then gives an
average density of 1/9, and a constant number of spurious
decodings (about 8). In a practical system, these spurious
decodings would be rejected by either using a checksum or a
digital signature in each message sent. It is surprising that
the number is constant, regardless of the size of the circuit
and the size of the resulting codebook. This suggests that a
large system would be able to reject the spurious messages
very quickly.

The log of the estimated codebook size, log2(N), grows
logarithmically in the number of circuit inputs n. The num-
ber of message bits that could be sent reliably was found to
be just under this number, so the message sizes that could
be transmitted also grew logarithmically. The message size
grows linearly for BBC, so these initial circuits shown here
are not yet as efficient as BBC. A useful area for further re-
search will be to explore other circuits, to find circuit families
that will be as efficient as BBC.

9. CONCLUSIONS
We proposed the HBT algorithm, a new algorithm for

jam resistance without shared secrets, for adversaries with
no bound on computational power. This is only the sec-
ond known algorithm for this problem, after BBC, and uses
a very different approach. We proved that it is more gen-
eral, including BBC as a special case, and even including all
possible concurrent codes as special cases. The most diffi-
cult part of developing HBT was finding monotone boolean
functions (MBF) that would have the desired properties. We
described a family of such circuits, and gave both theoret-
ical and empirical results suggesting that these are useful.
Areas for future research include how to improve the choice
of MBF further, to increase the efficiency, so the message
size would grow faster with increasing input size. For this,

n k1 k2 a d s log2(N)
64 3 57 0.0922 0.333 7.886 6.6
128 7 119 0.1081 0.564 7.529 8.1
256 14 243 0.1097 0.716 7.933 9.6
512 28 495 0.1097 0.825 8.041 11.1
1024 56 999 0.1101 0.898 7.704 12.5
2048 113 2015 0.1103 0.942 7.767 13.9
4096 223 4044 0.1107 0.967 7.767 15.6

k1 = 0.545n
k2 = n− n0.463

a = 1/9
s = 8
log2(N) = 1.47log2(n)− 2.18

Figure 5: Best results for circuits of various sizes

it may be useful to explore circuits with more layers, or
with connections between non-adjacent layers, or with other
topologies.

10. ACKNOWLEDGMENTS
This work is funded in part by the National Science Foun-

dation under Grant No. DUE-0911991. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

This work was sponsored in part by the Air Force Office
of Scientific Research (AFOSR). This material is based on
research sponsored by the United States Air Force Academy
under agreement number FA7000-14-2-0009. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the United States Air Force
Academy or the U.S. Government.

11. REFERENCES
[1] Leemon C. III Baird and William L. Bahn. An efficient

correlator for implementations of bbc jam resistance.
Technical Report USAFA-TR-2009-ACCR-02, U. S. Air
Force Academy, Academy Center for Cyberspace
Research, Nov 2009.

[2] Leemon C. III Baird, William L. Bahn, Michael D.
Collins, Martin C. Carlisle, and Sean Butler. Keyless
jam resistance. In Proceedings of the 8th Annual IEEE
SMC Information Assurance Workshop (IAW), pages
143–150, June 20-22 2007.

[3] Jack P.F. Glas. On multiple access interference in a
ds/ffh spread spectrum communication system. In In
the proc of the Third IEEE International Symposiumon
Spread Spectrum Techniquesand Applications, July
1994.

[4] Leemon C. Baird III, William L. Bahn, and Michael D.
Collins. Jam-resistant communication without shared
secrets through the use of concurrent codes. U.S. Air
Force Academy Technical Report, February 2007.

[5] E. G. Kanterakis. A novel technique for
narrowband/broadband interference excision in ds-ss

communications. In MILCOM ’94, volume 2, pages
628–632, 1994.

[6] W. H. Kautz and R. C. Singleton. Nonrandom binary
superimposed codes. IEEE Transactions on
Information Theory, pages 363–377, 1964.

[7] L. Li and L. Milstein. Rejection of pulsed cw
interference in pn spread-spectrum systemsusing
complex adaptive. In IEEE Trans. Commun, 1994.

